scholarly journals Assessment of Antimicrobial, Antioxidant, Anti-inflammatory, and Anticancer Properties of Polyphenols in Ragi Plant

2021 ◽  
pp. 1-6
Author(s):  
Vikil Ramesh ◽  
◽  
Megha Mathur ◽  
Kiran S ◽  
Rajeswari N ◽  
...  

Background and Objectives: (Eleusine coracana) is a rich source of proteins, phytochemicals, and fibers with several health benefits. Cancer accounts for 12c/o of death worldwide, which requires superior therapeutic strategies. Polyphenols are a class of phytochemicals in plant derived compounds, that has been reported to exhibit anticancer, antioxidant, anti-inflammatory and antimicrobial properties. The objective was to investigate the binding potential of selected polyphenols against probable drug targets of various types of cancer and provide an insight on the anti-inflammatory, antioxidant, and antimicrobial properties by using molecular docking method. Materials and Methods: Ten receptors were analyzed for anticancer, two receptors for anti- inflammatory, three receptors for antioxidant, and five receptors for antimicrobial studies. The binding competences of polyphenol towards selected targets were studied by molecular docking. Results: Affinity of polyphenols as an anticancer agent with respect specific targets viz CDKN1A, FOXO1, FGFR2, CTNNB1, and GST-PI was evident. The binding energies of docked complexes were found to be -116.56, -114.5, -110.38, -106.9, and -105.07 kcal/mol, respectively. In case of anti-inflammatory the best binding was seen in between COX-2 receptor with and COX-1 receptors. Antioxidant studies it was observed that SOD2 showed the best binding energy followed by SOD3. Followed by antimicrobial studies the best binding interaction some how were shown by IARS and PBP1a receptors. Conclusion: Present studies revealed that polyphenols has superior interacting properties towards these cancer targets than their normal ligands and shows a strong approach to anti-inflammatory, antioxidant, and antimicrobial activity

2021 ◽  
pp. 1-2
Author(s):  
Derqaoui Sabrine ◽  
◽  
EL Majoudi Salma ◽  
Rouas Lamia ◽  
Lamalmi Najat ◽  
...  

Background and Objectives: (Eleusine coracana) is a rich source of proteins, phytochemicals, and fibers with several health benefits. Cancer accounts for 12c/o of death worldwide, which requires superior therapeutic strategies. Polyphenols are a class of phytochemicals in plant derived compounds, that has been reported to exhibit anticancer, antioxidant, anti-inflammatory and antimicrobial properties. The objective was to investigate the binding potential of selected polyphenols against probable drug targets of various types of cancer and provide an insight on the anti-inflammatory, antioxidant, and antimicrobial properties by using molecular docking method. Materials and Methods: Ten receptors were analyzed for anticancer, two receptors for anti- inflammatory, three receptors for antioxidant, and five receptors for antimicrobial studies. The binding competences of polyphenol towards selected targets were studied by molecular docking. Results: Affinity of polyphenols as an anticancer agent with respect specific targets viz CDKN1A, FOXO1, FGFR2, CTNNB1, and GST-PI was evident. The binding energies of docked complexes were found to be -116.56, -114.5, -110.38, -106.9, and -105.07 kcal/mol, respectively. In case of anti-inflammatory the best binding was seen in between COX-2 receptor with and COX-1 receptors. Antioxidant studies it was observed that SOD2 showed the best binding energy followed by SOD3. Followed by antimicrobial studies the best binding interaction some how were shown by IARS and PBP1a receptors. Conclusion: Present studies revealed that polyphenols has superior interacting properties towards these cancer targets than their normal ligands and shows a strong approach to anti-inflammatory, antioxidant, and antimicrobial activity


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 653
Author(s):  
Seth O. Asiedu ◽  
Samuel K. Kwofie ◽  
Emmanuel Broni ◽  
Michael D. Wilson

Severely ill coronavirus disease 2019 (COVID-19) patients show elevated concentrations of pro-inflammatory cytokines, a situation commonly known as a cytokine storm. The p38 MAPK receptor is considered a plausible therapeutic target because of its involvement in the platelet activation processes leading to inflammation. This study aimed to identify potential natural product-derived inhibitory molecules against the p38α MAPK receptor to mitigate the eliciting of pro-inflammatory cytokines using computational techniques. The 3D X-ray structure of the receptor with PDB ID 3ZS5 was energy minimized using GROMACS and used for molecular docking via AutoDock Vina. The molecular docking was validated with an acceptable area under the curve (AUC) of 0.704, which was computed from the receiver operating characteristic (ROC) curve. A compendium of 38,271 natural products originating from Africa and China together with eleven known p38 MAPK inhibitors were screened against the receptor. Four potential lead compounds ZINC1691180, ZINC5519433, ZINC4520996 and ZINC5733756 were identified. The compounds formed strong intermolecular bonds with critical residues Val38, Ala51, Lys53, Thr106, Leu108, Met109 and Phe169. Additionally, they exhibited appreciably low binding energies which were corroborated via molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) calculations. The compounds were also predicted to have plausible pharmacological profiles with insignificant toxicity. The molecules were also predicted to be anti-inflammatory, kinase inhibitors, antiviral, platelet aggregation inhibitors, and immunosuppressive, with probable activity (Pa) greater than probable inactivity (Pi). ZINC5733756 is structurally similar to estradiol with a Tanimoto coefficient value of 0.73, which exhibits anti-inflammatory activity by targeting the activation of Nrf2. Similarly, ZINC1691180 has been reported to elicit anti-inflammatory activity in vitro. The compounds may serve as scaffolds for the design of potential biotherapeutic molecules against the cytokine storm associated with COVID-19.


2017 ◽  
Vol 9 ◽  
pp. 102
Author(s):  
Joshita Djajadisastra ◽  
Hamka Decky Purnama ◽  
Arry Yanuar

Objective: A drug can replace other drugs in the same binding position in protein plasma, increasing pharmacological response due to the increasedfree drug concentration. Drug shifting is critical when a compound is tightly bound to a protein. For example, a binding fraction change, from 98% to94%, may increase the free fraction 3 times, from 2% to 6%. Knowing that there is an interaction between mefenamic acid and piroxicam on plasmaprotein, more specifically on human albumin, this study aimed to visualize the interaction between both drugs and human albumin in silico.Methods: This study used AutoDock4 as a molecular docking technique, obtaining binding visualizations, binding energies (ΔG), and inhibitionconstants (Ki) of both mefenamic acid-albumin and piroxicam-albumin bindings.Results: It is shown that the ΔG and Ki of both mefenamic acid and piroxicam are −5.47 kcal/mol (98.59 μM) and −7.46 kcal/mol (3.42 μM), respectively.Conclusions: The process of binding mefenamic acid to albumin can be substituted with piroxicam due to its higher ΔG and Ki values. It can bepredicted that this interaction will increase the free mefenamic acid concentration in blood plasma which, in turn, enhances the therapeutic effect.


2018 ◽  
Vol 16 (1) ◽  
pp. 184-200 ◽  
Author(s):  
Festus Chioma ◽  
Anthony C. Ekennia ◽  
Aderoju A. Osowole ◽  
Sunday N. Okafor ◽  
Collins U. Ibeji ◽  
...  

AbstractHeteroleptic divalent metal complexes [M(L) (bipy)(Y)]•nH2O (where M = Mn, Co, Ni, and Zn; L = Schiff base; bipy = 2,2’-bipyridine; Y = OAc and n = 0, 1) have been synthesized from pyrimidine Schiff base ligand 3-{(E)-[(4,6-dimethylpyrimidin-2-yl)imino]methyl} naphthalen-2-ol, 2,2’-bipyridine and metal(II) acetate salts. The Schiff base and its complexes were characterized by analytical (CHN elemental analyses, solubility, melting point, conductivity) measurements, spectral (IR, UV-vis, 1H and 13C-NMR and MS) and magnetometry. The elemental analyses, Uv-vis spectra and room temperature magnetic moment data provide evidence of six coordinated octahedral geometry for the complexes. The metal complexes’ low molar conductivity values in dimethylsulphoxide suggested that they were non-ionic in nature. The compounds displayed moderate to good antimicrobial and antifungal activities against S. aureus, P. aeruginosa, E. coli, B. cereus, P. mirabilis, K. oxytoca, A. niger, A. flevus and R. Stolonifer. The compounds also exhibited good antioxidant potentials with ferrous ion chelation and, 1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging assays. Molecular docking studies showed a good interaction with drug targets used. The structural and electronic properties of complexes were further confirmed by density functional theory calculations.


Author(s):  
RAMA ADIGA

Objective: The hyrtimomine A-K class of indole-based compounds extracted from Hyrtios spp. of sponges from the sea has not been studied for their anticancer properties. Phosphoinositide-dependent kinase 1 (PDK1) is a master regulator of many types of cancer. Compounds currently targeting PDK1 are currently of poor specificity and solubility. Hence, molecular docking to look for new compounds inhibiting PDK1 from the marine environment was carried out. Methods: Target selection for ligands hyrtimomine A-K was done using PharmMapper tool. Molecular docking was done using iGEMDOCK 2.1, a generic evolutionary method of docking. Site moiety mapping was done in SimMap to extract the anchor preference of the top hits. Comparison of ligand binding energies, pharmacokinetic properties with lead compound BX-517 was carried out. Results: Hyrtimomine B, C, D, and G were top hits using iGEMDOCK. The highest score was obtained for hyrtimomine C. Van der Waals interaction at T222 and V96 and hydrogen bond interaction at K111 determined pocket stability. The solubility properties of the compound showed higher score for hyrtimomine C. The conserved features of hyrtimomine C were then compared with the crystal structure of lead compound (BX-517, which was not developed further due to poor solubility and bioavailability). The pharmacokinetic properties of hyrtimomine C were superior to BX-517 and had better solubility and drug-likeness score, hence, may be a candidate structure for drug development. Conclusion: The unique azapeno indole structure of hyrtimomine C highlighted the mode of binding and residues in binding site.


2020 ◽  
Author(s):  
Ma Donglai ◽  
Yuxin Jia ◽  
Mingdong Si ◽  
Huigai Sun ◽  
Huiru Du ◽  
...  

Abstract Background: Retrieve Curative effect of Six Gentlemen Modified Decoction (SGMD) in treating with coronavirus disease ( COVID-19 ) by network pharmacology and verify its authenticity by molecular docking. Methods: The chemical constituents, effective components, and action targets were screened using TCMSP. COVID-19 related targets were retrieved by the GeneCards and NCBI databases, and drug targets and disease targets were mapped by Venny to obtain potential targets for treatment. The regulatory network of traditional Chinese medicine (TCM) compounds was established with Cytoscape to obtain the key components, and the PPI network and its network topology were established with the Bisogenet and CytoNCA plug-ins to obtain the core targets. Bioconductor was used for GO function analysis and KEGG pathway analysis to obtain the relevant functions and pathways. Results: 173 effective components, 253 targets, and 348 targets related to COVID-19 were obtained after screening, 50 cross targets were shown, and the key components of the top 15 are flavonoids such as quercetin, luteolin, kaempferol, naringenin, licochalcone A, etc. The top 28 core targets include TP53, EGFR, SRC, AR, ABL1, and others. Biological processes such as the responses to metal ions, molecules of bacterial origin, lipopolysaccharide, toxic substances, and oxidative stress were involved. The main pathway involved the AGE−RAGE signaling pathway in diabetic complications as well as the TNF and IL-17 signaling pathways. The average binding energies of the first three core components connected with 6LU7 and 1R42 were -4.16 kJ/mol and -4.12 kJ/mol, respectively.Conclusion: The core compounds of SGMD can spontaneously combine with SARS-CoV-2 3CL hydrolase and ACE2 to treat COVID-19.


2021 ◽  
Author(s):  
Huixia Feng ◽  
Guilin Chen ◽  
Yongli Zhang ◽  
Mingquan Guo

Abstract Background: Sinopodophyllum hexandrum (S. hexandrum) is a typical Chinese herbal medicine with numerous components and remarkable pharmacological activities. However, the specific phytochemicals responsible for its anti-proliferative, anti-inflammatory and anti-viral effects remain unexplored.Methods: The integrated analytical strategy combining bio-affinity ultrafiltration with multiple drug targets was developed to rapidly screen and identify bioactive ligands from S. hexandrum. The in vitro anti-proliferative and COX-2 inhibitory assays of bioactive ligands screened were further verified by sulforhodamine B (SRB) cell proliferation and cytotoxicity detection and COX-2 inhibitor screening kits, respectively. Molecular docking analysis was also implemented by the AutoDockTools 1.5.6 software.Results: 10, 7, 9 and 9 phytochemicals were screened out and identified as the potential Topo I, Topo II, COX-2 and ACE2 ligands, respectively. Hereinto, podophyllotoxin and quercetin with higher EF values displayed strong inhibitory effects on A549 and HT-29 cells comparable with etoposide and 5-FU. Furthermore, compared with indomethacin at 0.73 ± 0.07 mM, podophyllotoxin and kaempferol with higher EF values exerted stronger inhibitory effects with IC50 values at 0.36 ± 0.02 mM and 10.49 ± 0.61 mM, respectively. Additionally, the optimal binding sites and mode of action between bioactive ligands and multiple drug targets were determined by molecular docking. Wherein, isorhamnetin showed a stronger affinity to ACE2 with the binding energy of -5.72 kcal/mol and the IC50 value at 63.95 mM, lower than MLN-4760 (-4.27 kcal/mol and 738.62 mM). Conclusions: The integrative strategy combining multiple drug targets and bio-affinity ultrafiltration LC-MS in the present study showed very promising potential for the quick screening and identifying bioactive ligands in S. hexandrum for Topo I, Topo II, COX-2 and ACE2, and some bioactive compounds screened out from this work were verified with other in vitro assays, and even better than those positive drugs of interest. Based on these findings, we then first constructed an interacting network among multi-components and multi-targets. In this way, we showcased a quick and reliable experimental strategy for uncovering the underlying mechanism of the empirical traditional applications of S. hexandrum which could also provide valuable information for better understanding the therapeutic targets and therapeutic ligands of other herbal medicines.


2020 ◽  
Vol 11 (10) ◽  
pp. 232-239
Author(s):  
Hamza Nadjib Merad-boudia ◽  
Majda Dali-Sahi ◽  
Baya Guermouche ◽  
Nouria Dennoun-Medjati

Introduction The Covid 19 pandemic has put the cardiovascular risk incurred when using nonsteroidal anti-inflammatory drugs at the heart of the discussion. Based on the information currently available, WHO does not recommend the use of ibuprofen. the objective is to evaluate the inhibition of cyclo-oxygenase 2 by ibuprofen by validating molecular docking. Method The crystallographic structure of ibuprofen bound to cyclooxygenase-2 was obtained from the Protein Data Bank (PDB) at a resolution <3.00 Å. The receiver was visualized using Discovery Studio Visualizer version 2.5.5. It was efficiently prepared using AutoDock / Vina software. The 3D structure of Ligand (Ibuprofen) was downloaded from the Drugbak database (https://www.drugbank.ca/): Accession number DB01050 Results Molecular docking was chosen as the first-line discrimination of the ibuprofen-COX2 intercation for the in silico study of putative competitors. The complex formed by Ibuprofen-COX 2 from the experimental model gives a docking score (Affinity: -7.3 (kcal / mol) with a mean square deviation of (RMSD = 23.884). Conclusion The evaluation of the inhibition of cyclo-oxygenase 2 by ibuprofen was validated by molecular docking. Cardiovascular effects already reported in patients treated with traditional non-steroidal anti-inflammatory drugs and coxibs have been observed in patients with COVID 19. Molecular docking becomes an essential step in drug discovery to explore other drug targets


Sign in / Sign up

Export Citation Format

Share Document