scholarly journals Anesthesia Management of Emergent Sternotomy for Acute Cardiac Tamponade in a Pediatric Hematopoietic Stem Cells Recipient

2020 ◽  
pp. 1-5
Author(s):  
Sengottaian Sivakumar ◽  
◽  
Stacey Watt ◽  
Justin Eckler ◽  
◽  
...  

Hematopoietic stem cell transplantation (HSCT) is the infusion of hematopoietic stem and progenitor cells to reconstitute the bone marrow. Due to the long-term consequences of HSCT, anesthetic management of these patients could be complicated. Here the authors describe the clinical features and management of a hemopoietic stem cell recipient with a systemic form of GVHD, who presented with cardiac tamponade due to right ventricular injury, after pericardiocentesis for a severe pericardial effusion, which led to bedside pericardial window and sternotomy with multiple cardiac arrests in the operating room

Blood ◽  
1995 ◽  
Vol 85 (6) ◽  
pp. 1472-1479 ◽  
Author(s):  
CL Li ◽  
GR Johnson

Murine bone marrow cells were fractionated by fluorescence-activated cell sorting into Rh123lo Lin- c-kit+ Ly6A+, Rh123hi Lin-c-kit+ Ly6A+, and Lin- c-kit+ Ly6A- populations within which most, if not all, of the hematopoietic activities of the marrow resided. The Rh123lo Lin- c- kit+Ly6A+ cells, which consist exclusively of small- or medium-sized lymphocyte-like cells, are highly enriched for long-term hematopoietic in vivo repopulating cells. The enrichment factor for these cells from the marrow was estimated as 2,000-fold. The Rh123hi Lin- c-kit+ Ly6A+ cells, although also highly enriched for day-12 spleen colony-forming units, were relatively depleted of long-term in vivo repopulation capacity. Most, if not all Lin- c-kit+ Ly6A- cells were Rb123hi. In contrast to both Rh123lo and Rh123hi Lin- c-kit+ Ly6A+ stem cell populations, the Lin- c-kit+ Ly6A- cells can be stimulated to proliferate in vitro in the presence of single cytokines, which is a characteristic of committed progenitor cells. No marked synergistic interactions between individual cytokines were observed with this cell population. Both Rh123hi Lin- c-kit+ Ly6A+ mature stem cell and Lin- c- kit+ Ly6A- progenitor cell populations displayed in vivo repopulation kinetics resembling those of the putative short-term hematopoietic repopulating cells.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 250-250
Author(s):  
Karsten Sauer

Tight regulation of hematopoietic stem cell (HSC) homeostasis ensures life-long hematopoiesis and prevents blood cancers. The mechanisms balancing HSC quiescence with expansion and differentiation into hematopoietic progenitors are incompletely understood. Here, we identify inositoltrisphosphate (IP3) 3-kinase B (Itpkb) as a novel essential regulator of HSC quiescence and function. Young Itpkb-/- mice accumulated phenotypic HSC which were less quiescent and proliferated more than wildtype controls. Itpkb-/- HSC downregulated quiescence and stemness associated mRNAs, but upregulated activation, oxidative metabolism, protein synthesis and lineage associated transcripts. Although they showed no significant homing defects and had normal to elevated viability, Itpkb-/- HSC had a severely reduced competitive long-term repopulating potential. Aging Itpkb-/- mice lost hematopoietic stem and progenitor cells and died with severe anemia. Wildtype HSC normally repopulated Itpkb-/- hosts, indicating a HSC-intrinsic Itpkb requirement. In vitro, Itpkb-/- HSC had reduced cobblestone-area forming cell activity and showed increased stem cell factor activation of the phosphoinositide 3-kinase (PI3K) effector Akt. This was reversed by exogenous provision of the Itpkb product IP4, a known PI3K/Akt antagonist. Itpkb-/- HSC also showed transcriptome changes consistent with hyperactive Akt/mTOR signaling. Thus, we propose that Itpkb ensures HSC quiescence and function in part by limiting cytokine-induced PI3K signaling in HSC. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3326-3326
Author(s):  
Karin Golan ◽  
Mayla Bertagna ◽  
Suditi Bhattacharya ◽  
Anoop Babu-Vasandan ◽  
Francesca Avemaria ◽  
...  

Abstract Bone marrow (BM) residing hematopoietic stem and progenitor cells (HSPC) replenish the blood with mature cells with a finite life span on a daily basis while maintaining the reservoir of undifferentiated stem cells. We recently showed that light/darkness onset induce two different BM HSPC peaks. Morning-induced norepinephrine and TNF secretion metabolically facilitate HSPC differentiation and egress to replenish the circulation with new mature leukocytes. Night augmented BM melatonin renews BM CD150+ hematopoietic stem cell (HSC) reservoir and their long-term repopulation potential (Golan et al, Cell Stem Cell, In Press). How melatonin primes BM HSPC to change their phenotype and function to re-acquire an undifferentiated and primitive state, is poorly understood. The hormone melatonin is an important mediator of bone formation and mineralization, and ultimately regulates the balance of bone remodeling (Cardinali DP et al, J. Pineal Res., 2003). The cross talk between HSPC and their BM stromal microenvironment is tightly regulated and determines HSPC fate. Therefore, we examined whether melatonin plays a role in regulation of murine BM mesenchymal stem and progenitor cells (MSPC, CD45-/Sca-1+/PDGFRα+), known to support HSPC maintenance in their BM niches. Mice treated with melatonin for 5h during the morning had increased levels of BM MSPC endowed with higher colony-forming unit fibroblast (CFU-F) potential in vitro. Interestingly, the metabolic state of these progenitor cells was altered by melatonin demonstrating reduced glucose uptake ability and lower mitochondria content. To test if differences in stromal cells content exist between day and night, we examined BM MSPC and found increased levels at 11PM, the time of melatonin BM peak, with higher Sca-1high surface expression levels, as compared to daylight 11AM. These changes were associated with augmented CFU-F levels by MSPC harvested at 11PM and accompanied by reduced glucose uptake levels and mitochondria content. Our preliminary results suggest that melatonin at night increases BM MSPC levels and reduces their metabolic activity to maintain them in a primitive and undifferentiated state. Moreover, we found that melatonin-elevated HSPC at 11PM also share lower glucose uptake ability with reduced mitochondria content and lower mitochondrial membrane potential (evaluated by TMRE). We hypothesize that melatonin reprograms the metabolic state of both HSPC and their stromal MSPC microenvironment to renew and maintain a primitive state of both populations at night. One of the factors inhibited by melatonin is the bioactive lipid Sphingosine 1-Phosphate (S1P), which in turn inhibits melatonin production. We found that mice with low S1P levels (S1Plow) due to lack of the SPHK1 enzyme have high BM melatonin levels also during the day in contrast to wild type (WT) mice. S1Plow mice had higher levels of primitive stromal progenitor cells including CFU-F and lower levels of differentiating osteoblast precursors compared to WT mice. In addition, these mice had less BM Reactive Oxygen Species (ROS)high committed hematopoietic progenitor cells, but more primitive ROSlow EPCR+ HSC endowed with higher long-term repopulation capacity in both primary and serially transplanted recipients. Next, we examined how light/dark cues affect the homing of transplanted BM HSPC into the BM of irradiated hosts 18h after transplantation. We found that donor HSPC harvested at 11PM have elevated homing ability compared to 11AM harvested cells. Importantly, MSPC also better homed to the BM of irradiated recipients when we transplanted donor BM cells obtained at 11PM compared with 11AM. As a result, accelerated BM repopulation kinetics was documented one week post transplantation in mice transplanted with BM cells harvested at 11 PM. Taken together, our results reveal that in vivo melatonin renews and maintains the BM reservoir and function of primitive MSPC and HSPC by metabolically reprogramming these cells during the night on a daily basis. Since the primed HSPC and MSPC at night showed improved function and BM homing potential, these features might be mimicked by human BM cells in order to harness them for improved clinical transplantation protocols. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5117-5117
Author(s):  
Valentina Giai ◽  
Elona Saraci ◽  
Eleonora Marzanati ◽  
Christian Scharenberg ◽  
Monica De Stefanis ◽  
...  

Abstract BACKGROUND: In the recent years, numerous studies based on multicolor flowcytometry have analyzed the different subpopulations of bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs) (Manz MG et al, PNAS 2002; Majeti R et al, Cell Stem Cell 2007): the common myeloid progenitors (CMPs: Lin-CD34+CD38+CD45RA-CD123+), the granulocyte-macrophage progenitors (GMPs: Lin-CD34+CD38+CD45RA+CD123+) and the megakaryocyte-erythroid progenitors (MEPs: Lin-CD34+CD38+CD45RA-CD123-) constitute the progenitor compartment, while the hematopoietic stem cells (HSCs: Lin-CD34+CD38- CD45RA-CD90+), the multipotent progenitors (MPPs: Lin-CD34+CD38- CD45RA-CD90-) and the lymphoid-myeloid multipotent progenitors (LMPPs: Lin-CD34+CD38- CD45RA+CD90-) represent the more immature HSPCs. In animal models, the progenitor compartment includes short-term repopulating cells, leading to the hematological recovery in the first 5 weeks after transplantation, whereas the stem cell compartment comprehends the long-term repopulation cells, responsible for the long-term hematological recovery. However, very little is known about the different subpopulations of HSPCs among peripheral blood (PB) CD34+ in basal state and after mobilization for harvest and transplantation. Our study was conducted to analyze PB CD34+ cells from healthy volunteers and from hematological patients during CD34+ cells mobilization. Our main aim was to understand if the proportions of different HSPCs among PB CD34+ cells were similar to those found in BM and whether the mobilizing regimens employed in chemo treated patients differently affected CD34+ cells subfractions in PB. METHODS: multicolor flowcytometry was used to analyze CD34+ cells from 4 BM samples and 9 PB samples from healthy volunteers and 32 PB samples from hematological patients prior CD34+ cells harvesting. RESULTS: Percentages of CD34+ cells subpopulations were different in basal PB compared to the BM: indeed, CMPs, GMPs and MEPs constituted respectively 27.6% ± 9.5, 23.8% ± 7.2 and 27.6% ± 16.2 of BM CD34+ cells and 47.8% ± 9.5, 10.3% ± 6.9 and 16.1% ± 7.6 of the total PB CD34+ cells. HSCs constituted 2.1% of BM and 1.5% of PB CD34+ cells. The differences between BM and circulating CMPs and GMPs were significant (p<0.005 and p<0.01). No differences in subpopulations proportions were shown comparing G-CSF mobilized and basal PB CD34+ cells. Interestingly, the 2 patients mobilized with AMD3100 (the inhibitory molecule for CXCR4) showed a higher percentage of GMPs (33.8% and 37.8% versus the average 16.3% ± 9.8 in G-CSF mobilized samples) and a lower fraction of CMPs (29.5% and 41.6% versus the average 58% ± 12 in G-CSF mobilized samples). In order to understand this result, we looked then at the CXCR4 mean fluorescence intensity among the progenitor subsets: GMPs showed significantly higher levels of this molecule compared to CMPs and MEPs. Regarding the mobilizing chemotherapy regimens, CMPs percentages were higher (61.1% versus 49.1%, p: 0.038) and GMPs’ were significantly lower (11.1% versus 27.6%, p<0.0001) in cyclophosphamide treated patients, compared to patients mobilized with other chemotherapy regimens. The percentage of HSCs did not significantly differ among bone marrow, unmobilized and mobilized PB CD34+ cells. Therefore, since an average collection of mobilized PB cells contains approximately one log more CD34+ cells than a BM harvest, a similarly higher amount of HSC are infused with mobilized CD34+ cell transplantation. A linear positive correlation between the number of mobilized CD34+ cells and the number of mobilized CMPs, GMPs, and MEPs was observed indicating that the proportions of different HSPCs did not significantly change among high- and low-mobilizers. There were no correlations between the number of mobilized subpopulations and leucocytes, hemoglobin and platelets levels. CONCLUSIONS: Our data displayed the heterogeneity of HSPC compartment between PB and BM. Many factors could contribute to this variegated scenario. These mechanisms comprehension can help us to choose the most suitable chemotherapy and cytokine administrations in order to improve clinical outcomes as infections complications, length of aplasia and transfusion requirements during an hematopoietic stem cell transplantation. Disclosures Palumbo: Bristol-Myers Squibb: Consultancy, Honoraria; Genmab A/S: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Janssen-Cilag: Consultancy, Honoraria; Millennium Pharmaceuticals, Inc.: Consultancy, Honoraria; Onyx Pharmaceuticals: Consultancy, Honoraria; Array BioPharma: Honoraria; Amgen: Consultancy, Honoraria; Sanofi: Honoraria. Boccadoro:Celgene: Honoraria; Janssen: Honoraria; Onyx: Honoraria.


2018 ◽  
Vol 29 (24) ◽  
pp. 2946-2958 ◽  
Author(s):  
Chelsea A. Saito-Reis ◽  
Kristopher D. Marjon ◽  
Erica M. Pascetti ◽  
Muskan Floren ◽  
Jennifer M. Gillette

Hematopoietic stem and progenitor cell (HSPC) transplantation represents a treatment option for patients with malignant and nonmalignant hematological diseases. Initial steps in transplantation involve the bone marrow homing and engraftment of peripheral blood–injected HSPCs. In recent work, we identified the tetraspanin CD82 as a potential regulator of HSPC homing to the bone marrow, although its mechanism remains unclear. In the present study, using a CD82 knockout (CD82KO) mouse model, we determined that CD82 modulates HSPC bone marrow maintenance, homing, and engraftment. Bone marrow characterization identified a significant decrease in the number of long-term hematopoietic stem cells in the CD82KO mice, which we linked to cell cycle activation and reduced stem cell quiescence. Additionally, we demonstrate that CD82 deficiency disrupts bone marrow homing and engraftment, with in vitro analysis identifying further defects in migration and cell spreading. Moreover, we find that the CD82KO HSPC homing defect is due at least in part to the hyperactivation of Rac1, as Rac1 inhibition rescues homing capacity. Together, these data provide evidence that CD82 is an important regulator of HSPC bone marrow maintenance, homing, and engraftment and suggest exploiting the CD82 scaffold as a therapeutic target for improved efficacy of stem cell transplants.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 813-813
Author(s):  
Oksana Zavidij ◽  
Claudia R Ball ◽  
Sylvia Fessler ◽  
Daniela Belle ◽  
Manfred Schmidt ◽  
...  

Abstract Abstract 813 Most of the knowledge to date on the in vivo blood forming activity of individual hematopoietic stem and progenitor cells was gained in transplantation experiments of defined cell populations into syngeneic or xenogeneic murine hosts. Consequently, stem and progenitor cells are solely defined by their role in post-transplant reconstitution and very little is known on their clonal activity in steady-state hematopoiesis. To gain new insights into the clonal activity of stem and progenitor cells under steady-state conditions we used a genetic in vivo lentiviral marking strategy and subsequently monitored the clonal activity of marked hematopoietic cells for up to one year by highly sensitive integration site amplification using LAM-PCR. Highly concentrated GFP-expressing lentiviral vectors (LV) were injected intravenously (IV, n=10) or intrafemorally (IF, n=15) into GFP-tolerant B6.Cg-Tg (Krt1-15-EGFP) 2Cot/J (Krt15) mice to directly mark hematopoietic stem and progenitor cells. 5 mice from each of the two cohorts were treated with 5-Fluorouracil (5-FU, 150 mg/kg) to mobilize hematopoietic stem cells prior to LV-marking. The clonality of the transduced myelopoiesis and lymphopoiesis was analyzed by LAM-PCR. A small proportion of all peripheral blood cells in LV-injected mice consistently expressed GFP for up to one year (5-100 GFP+ cells per 20000 PB cells analyzed). Pre-treatment with 5-FU did not affect the percentage or lineage distribution of marked blood cells even when the vector was injected intravenously. Even though the initial percentage of marked cells was similar after IV and IF vector injection (p>0.05) the marking kinetics were different. Whereas the percentage of GFP expressing cells in PB of IF-marked mice remained stable over the whole observation period for up to 1 year, a 2-fold decline of the percentage of marked cells was detected two weeks after IV-marking indicating that predominantly short-lived more mature cells were transduced after IV vector injection. LAM-PCR analyses of sorted cell lineages showed that multiple clones contributed to the marked myeloid and lymphoid long-term hematopoiesis after IF-injection. In summary, our data demonstrate stable marking of steady-state hematopoiesis for up to one year. Our results demonstrate that remarkably stable stem cell clones with myeloid and lymphoid differentiation potential contribute to murine steady-state long-term hematopoiesis. In vivo marking will further allow to directly address the response of individual stem cell clones to hematopoietic stress including chemotherapy. Disclosures: No relevant conflicts of interest to declare.


2012 ◽  
Vol 103 (4) ◽  
pp. 356-366 ◽  
Author(s):  
Hui Lin Chua ◽  
P. Artur Plett ◽  
Carol H. Sampson ◽  
Mandar Joshi ◽  
Rebeka Tabbey ◽  
...  

2021 ◽  
Vol 10 (2) ◽  
pp. 293
Author(s):  
Gee-Hye Kim ◽  
Jihye Kwak ◽  
Sung Hee Kim ◽  
Hee Jung Kim ◽  
Hye Kyung Hong ◽  
...  

Umbilical cord blood (UCB) is used as a source of donor cells for hematopoietic stem cell (HSC) transplantation. The success of transplantation is dependent on the quality of cord blood (CB) units for maximizing the chance of engraftment. Improved outcomes following transplantation are associated with certain factors of cryopreserved CB units: total volume and total nucleated cell (TNC) count, mononuclear cell (MNC) count, and CD34+ cell count. The role of the storage period of CB units in determining the viability and counts of cells is less clear and is related to the quality of cryopreserved CB units. Herein, we demonstrate the recovery of viable TNCs and CD34+ cells, as well as the MNC viability in 20-year-old cryopreserved CB units in a CB bank (MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, Korea). In addition, cell populations in CB units were evaluated for future clinical applications. The stable recovery rate of the viability of cryopreserved CB that had been stored for up to 20 years suggested the possibility of uses of the long-term cryopreservation of CB units. Similar relationships were observed in the recovery of TNCs and CD34+ cells in units of cryopreserved and fresh CB. The high-viability recovery of long-term cryopreserved CB suggests that successful hematopoietic stem cell (HSC) transplantation and other clinical applications, which are suitable for treating incurable diseases, may be performed regardless of long-term storage.


Sign in / Sign up

Export Citation Format

Share Document