scholarly journals INDOOR RADON-222 CONCENTRATION MEASUREMENTS AT FACULTY OF EDUCATION, YAFEA, ADEN UNIVERSITY, YEMEN, USING CR-39 NUCLEAR TRACK DETECTOR

Author(s):  
Anwar Khadher Mohammed ◽  
Mokhtar Salim Saleh Al_Salimi ◽  
M. I. Ahmed

In this study, the activity concentration of indoor radon-222, annual effective dose, exhalation rate of radon, and relative risk of lung cancer are reported for different indoor buildings (students' dorms, teachers' dorms, offices, laboratories, library, lecture halls, and materials store) in Faculty of Education, Yafea, Aden University, Yemen. Sealed-can technique based on CR-39 nuclear tracks detector was distributed to radon gas survey. Twenty six radon detectors were mounted in seven buildings. The Radon measurements were performed for 90 days between December 2020 and March 2021. The results showed that the radon concentration ranges from 23,18 Bq m-3 to 66.49 Bq m-3 with an average value 35.86 Bq m-3, the annual effective dose ranges from 0.6 mSv y-1 to 1.639 mSv y-1 with an average value 0.979 mSv y-1, the exhalation rate ranges from 10.03 m Bq m-2 h-1 to 28.50 mBq m-2 h-1 with an average value 15.68 mBq m-2 h-1 and relative risk of lung cancer ranges from 1.02 to 1.06 with an average value 1.03. A strong correlation coefficient has been observed between radon concentration and radon exhalation rate. All of the values revealed in the study were of nominal state (that is less than allowed global values) and thus have no risk for the population living in these buildings.

2017 ◽  
Vol 14 (4) ◽  
pp. 688-691 ◽  
Author(s):  
Baghdad Science Journal

In this research the activity of radon gas in air in Baghad governorate,Iraq, using “alpha-emitters track registration (CR-39) track detector were measured. This measurement was done for selected areas from Baghdad Governorate, The results obtained shows that the highest average concentrations for Rn-222 is (179.077 Bq/m^3) which was recorded within Al-Shaaib city and less average concentrations was (15.79 Bq/m^3) in the nearby residential area of Baghdad International Airport and the overall average concentrations is (86.508 Bq/m^3) for these regions. Then the radon concentration was measured annual effective dose calculated from radon concentration and found in range from 0.4031 mSv/y to 4.5179 mSv /y with an average value of 2.1824 mSv/y. The annual effective dose of radon was within the allowed international limits.


2019 ◽  
Vol 14 (30) ◽  
pp. 24-32 ◽  
Author(s):  
Shafik S. Shafik

In this study, the activity concentrations of indoor radon, thoronand their progeny have been measured in air for 61 differentlocations of Al-Maddan city using twin cup dosimeter. Furthermore,some useful parameters concerning the health hazards have beenestimated; working level month (WLM), annual effective dose (Eff),and excess lung cancer per million person per year (ELC).The resultsshow that the values of radon gas levels in the investigated districtsvaried from 56.28 to 194.43Bq/m3with an overall average value132.96Bq/m3, while 0.313 to 1.085 for WLM with an overall average0.740, respectively. The value of Eff and ELC have been found tovary from 1.420 to 4.918 mSv/y with an overall average value3.354mSv/y, and 852 to 2951 with an overall average value 2013,respectively. For thoron gas only, the results showed that the thoronactivity concentration varied from 15.05 to 172.40 Bq/m3 with anoverall average 76.48 Bq/m3, and 0.021to 0.240for WLM with anoverall average 0.106, respectively. The values of Eff and ELC havebeen found to vary from 0.256 to 2.94 mSv/y with an overallaverage1.30 mSv/y and from 57 to 652 with an overall average of298, respectively. The concentration of radon progeny varied from59.44 to 301.39 Bq/m3 with an overall average 157.62 Bq/m3. Theresults illustrated that there is a large variation in the values of themeasured concentrations. This is due to the wide variation in theconstruction of the houses in Al-Madaan city. However, allinvestigated locations have radon concentration below the actionlevel (200-300Bq/m3) that recommended byICRP. Therefore, there isno health hazard of radon in the region of Al-Madaan city wheremeasurements have been performed.


Author(s):  
Iman Tarik Al-Alawy ◽  
Haider Rayed Fadhil

Measurements of radon gas concentrations with their progeny and the annual effective dose indoor the building of Al-Mustansiriyah University College of Science-Physics Department have been carried out by using time-integrated passive radon dosimeters solid state nuclear track detector CR-39 technique. The detectors with 1cm x1cm have been distributed over 70 places and suspended for sitting (1m) and standing (1.75m) positions in each location under study. The dosimetric measurements are made over a period of 90 days from 30 January 2014 to 30 April 2014. The calibration process has been done using radium-226 source with known activity radiation. It has found that the indoor radon gas concentrations varing from 37.488±6.123Bg/m3 to 58.670±7.660Bg/m3 with an average value 51.398±7.156Bg/m3 at 1m , and varing from 35.964±5.997Bg/m3 to 56.994±7.549Bg/m3 with an average value 47.057±6.847Bg/m3 at 1.75m which are within the worldwide limits 148Bg/m3 (EPA, 2003) and 200-300Bg/m3 (ICRP, 2009). The annual effective dose of the inhalation exposure to radon gas has been estimated and this vary from 0.394mSv/y to 0.617mSv/y with an average value 0.540mSv/y at 1m, and varing from 0.378mSv/y to 0.599mSv/y with an average value 0.495mSv/y at 1.75m which are within the worldwide permissible limist 3-10mSv/y (ICRP, 1993). The potential alpha energy concentration found to vary from 4.053mWL to 6.343mWL with an average value 5.557mWL at 1m and vary from 3.888mWL to 6.162mWL with an average value 5.087mWL at 1.75m which are less than the recommended value 53.33mWL (UNSCEAR, 1993). The lung cancer cases per million person per year vary from 7.093 to 11.101 per million person per year with an average value 9.725 per million person per year at 1m and vary from 6.805 to 10.784 per million person per year with an average value 8.904 per million person per year which are less than the recommended range 170-230 per million person per year (ICRP, 1993). The number of decays per-minute using swabs measurements technique have been used for selected units within two swabs from building materials walls for each unite, with area of 100cm2 using Ludlum 3030, the average of three swabs measurements have been calculated. Hence, the effectiveness of emitted alpha particles from the walls has been calculated to be varied from 0.00000 to 0.02222Bq/cm2 with an average value 0.01169Bq/cm2 at 1m and 0.01015Bq/cm2 at 1.75m respectevily which are within the permissible limit 0.04Bq/cm2 (Danial, 2010).


2014 ◽  
Vol 29 (4) ◽  
pp. 307-312 ◽  
Author(s):  
Abd-Elmoniem Elzain

Exposure to natural sources of radiation, especially 222Rn and its short-lived daughter products has become an important issue throughout the world because sustained exposure of humans to indoor radon may cause lung cancer. The indoor radon concentration level and radon effective dose rate were carried out in the dwellings of Medani, El Hosh, Elmanagil, Haj Abd Allah, and Wad Almahi cities, Gezira State - Central Sudan, in 393 measurements, using passive integrated solid-state nuclear track devices containing allyl diglycol carbonate plastic detectors. The radon concentration in the corresponding dwellings was found to vary from (57 ? 8) Bq/m3 in Medani to 41 ? 9 Bq/m3 in Wad Almahi, with an average of 49 ? 10 Bq/m3. Assuming an indoor occupancy factor of 0.8 and 0.4 for the equilibrium factor of radon indoors, we found that the annual effective dose rate from 222Rn in the studied dwellings ranges from 1.05 to 1.43 mSv per year and the relative lung cancer risk for radon exposure was 1.044%. In this research, we also correlated the relationship of radon concentration and building age. From our study, it is clear that the annual effective dose rate is larger than the ?normal? background level as quoted by UNSCEAR, lower than the recommended action level of ICRP, and less than the maximum permissible dose defined by the International Atomic Energy Agency.


2015 ◽  
Vol 7 (1) ◽  
pp. 1324-1335
Author(s):  
Jabbar H. Jebur

Radon concentration, exhalation rate, annual effective dose, radium activity, thorium, uranium potassium and radium equivalent have been measured in the present investigation for soil in the area around the old fertilizer factory in southern of Basrah Governorate. The measurements based on CR39 track detector for passive method, RAD7 for active method and NaI(Tl) for gamma concentration measurements. Average values for radon concentration in soil were 112.04±10.76 Bq/m3 using passive technique and 104.56±6.05 Bq/m3 using RAD7. From the result of the passive technique, area and mass exhalation rates and the annual effective dose were calculated. Gamma ray spectroscopy for the soil samples were performed and found that the average concentrations of 226Ra, 232Th and 40K were 50.89 Bq/kg, 21.74 Bq/kg and 640.4 Bq/kg respectively. Gamma ray hazard indices were calculated and found they are within the world average.


2021 ◽  
Vol 14 (4) ◽  
pp. 309-316

Abstract: The aim of the current study was to measure indoor radon concentration levels and its resulting doses received by the students and staff in schools of the directorate of education in the north of Hebron region- Palestine, during the summer months from June to September (2018), using CR-39 detectors. In this study, a total of 567 CR-39-based radon detectors were installed in the selected schools. The average radon concentrations were found to be 90.0, 66.5 and 58.0 Bqm-3 in Halhul, Beit Umar and Alarrub camp schools, respectively. Based on the measured indoor radon data, the overall average effective dose for the studied area was found to be 0.31 mSvy-1. Reported values for radon concentrations and corresponding doses are lower than ICRP recommended limits for workplaces. The results show no significant radiological risk for the pupils and staff in the schools under investigation. Consequently, the health hazards related to radiation are expected to be negligible. Keywords: Radon concentration, Alpha particles, Annual effective dose, Schools. PACs: 29.40.−n.


2021 ◽  
Vol 19 (12) ◽  
pp. 06-10
Author(s):  
Hussam Najem Abood ◽  
Ahmed Abbas Mohamed

Indoor radon/thoron concentration has been determined in some dwellings of Suq Alshouk district in Thiqar Governorate southern of Iraq, using LR-115 type II and CR-39 (SSNTDs). In this work the indoor radon/thoron concentration varies from (8-73) Bq m-3 for radon with an average 35±2Bq m-3, and ranges (1- 47) Bq m-3 for thoron with an average16±2Bq m-3. The average annual effective dose due to radon and thoron varies from 0.43-3.38m Sv y-1 with average value 1.43±0.11 mSv y-1.


2021 ◽  
Vol 5 (1) ◽  
pp. 23-26
Author(s):  
Conrad Khisa Wanyama ◽  
George Wangila Butiki ◽  
John Wanjala Makokha ◽  
Fred Wekesa Masinde

This research measured the concentration levels of radon in groundwater and determined the ingestion and inhalation dose. The study used RAD7 detector with RAD7-H2O accessory from Durridge Company to determine the radon levels. Thirty water samples in granitic dominated regions were collected from various areas of Bungoma County: ten from boreholes (BH), ten from hand dug wells (WL) and ten from springs (SP). The water samples were collected in 250 ml bottles which were tightly covered with lid to avoid radon leakage. The highest value was 303±4.00 KBq/m3 recorded in Kanduyi well and the lowest was 126±11.4kBq/m3 from where most of the samples recorded a high radon concentration with a mean of 269±5.25 KBq/m3 in wells, 213±7.96 KBq/m3 in boreholes and 290±7.70 KBq/m3 in springs. The average ingestion dose was found to be 1.5±0.07mSv/yr, 1.9±0.09 mSv/yr and 2.1±0.1 mSv/yr. The average annual effective dose rate for the samples collected were 2±0.1 mSv/yr for boreholes, 2.6±0.13 mSv/yr for wells and 2.7±0.14 mSv/yr for springs. The samples reported an average value of AED higher than the world average of 1.15 mSv/yr but below the exception limit of recommended action level of 10 mSv/yr hence the radon concentration levels in underground water in the study area has minimal health implications to the population.


Author(s):  
Israa Kamil Ahmed ◽  
Hyam Nazmy Khalaf ◽  
Mostafa Yuness Mostafa

Abstract In the present work, Radon Excess Lung Cancer (ELC) is estimated for fourteen soil samples from Babylon cement plant in Iraq. CR-39 nuclear track detector is utilized to measure the uranium content and radon 222Rn concentrations in soil samples. Uranium concentrations in soil samples varied from 0.008 to 0.05 ppm with mean value 0.025±0.013. Radon concentrations is founded between 31 and 92 Bq/m3 with mean value 56.72 and standard division, SD, 17.29. Radon Excess Lung Cancer per Million Persons per Year is determined with mean value 863 and standard division, SD, 261.65 (463.81-12082.8). Also, Annual effective dose, E (msv y-1), has a range from 0.77 to 2.32 with mean 1.44 and SD 0.44.


Sign in / Sign up

Export Citation Format

Share Document