AIRCRAFT REFUELING CONTROL SYSTEM FOR AUTOMATION OF FUEL AC-COUNTING. MODERN SOLUTIONS AND IMPLEMENTATION

Author(s):  
Sergey Aronov ◽  
◽  
Leonid Berner ◽  
Victor Kotov ◽  
Alexey Roshchin ◽  
...  

The article describes solution for dispatching the movement of a fueling service vehicle at the airport when performing a task for refueling an aircraft with automated control of the fueling service vehicle when issuing fuel on board an aircraft with measuring the mass of the issued fuel and providing centralized accounting.

2014 ◽  
Vol 0 (10) ◽  
pp. 73-77
Author(s):  
P. P. Tkachuk ◽  
Y. P. Salnyk ◽  
Y. M. Pashchuk ◽  
I. V. Matala

2017 ◽  
pp. 62-67
Author(s):  
V. G. Kuznetsov ◽  
O. A. Makarov

At cementing of casing of oil and gas wells during the process of injecting of cement slurry in the casing column the slurry can move with a higher speed than it’s linear injection speed. A break of continuity of fluid flow occurs, what can lead to poor quality isolation of producing formations and shorten the effective life of the well. We need to find some technical solution to stabilize the linear velocity of the cement slurry in the column. This task can be resolved with an automated control system.


Author(s):  
Boris F. ZARETSKIY ◽  
Arkadiy S. GUZENBERG ◽  
Igor A. SHANGIN

Life support for first manned spaceflights was based on supplies of consumables. Crew life support systems based on supplies of water and oxygen, in spite of their simplicity, are extremely inefficient in orbital space missions and are unfeasible in deep space missions because of mass and volume constraints. Therefore, there are currently developed and are to be used on space stations the life support systems that are based on chemical and physical regeneration of water and oxygen extracted from human waste. In view of further advances in long-duration orbital stations, and the prospects of establishment of planetary outposts and deep space exploration, the problem of constructing an automated system for controlling a suite of regenerative LSS becomes urgent. The complexity of solving the problem of constructing an efficient control system in this case owes to the existence of a large number of effectiveness criteria. The paper proposes a system of consolidated global efficiency criteria, which allows to break up this problem into a series of sub-problems of optimization in order to solve this problem. The proposed criteria are longevity, cost, comfort. The paper presents a series of specific examples of using the proposed principles with necessary generalizations. Key words: space life support systems, atmosphere revitalization equipment, automated control system, global generalized efficiency criteria, longevity, cost, comfort.


2021 ◽  
Vol 22 (10) ◽  
pp. 527-536
Author(s):  
K. D. Krestovnikov ◽  
A. A. Erashov ◽  
A. N. Bykov

With the growth of the population, the issue of food supply of cities with high-quality agricultural crops becomes urgent. Supply problems arising from this can be solved with the use of industrial greenhouse complexes with artificial lighting and groundless technologies. The development of these complexes makes the task of developing a control system to automate the cultivation processes urgent. Real industrial greenhouse complexes have a significant number of operations with the direct participation of personnel, which can be automated: control of the greenhouse microclimate, lighting, watering and preparation of the nutrient solution composition. This paper presents the architecture of a distributed control system for industrial greenhouse complexes. The system is built on a modular basis and is divided into three levels. The developed architecture is based on the use of standard modules, which makes the control system flexible and scalable. The paper also presents the basic design ratios, with the help of which it is possible to determine the required number of modules for the three levels of the proposed architecture. The use of wireless data transmission between modules based on LoRa technology allows you to abandon the laying of an information bus and at the same time deploy the system over large areas. Control of the system and its parameters is possible through direct human interaction with the interface of the control module or through remote interaction through the cloud. The architecture includes 3 types of executive modules, one combined sensor module and a control module. Each of the executive modules functions according to a given algorithm, and its parameters are controlled by a control module, based on a given growing program and information from sensors. This feature allows you to increase the reliability of the system and continue working in the event of a loss of communication with the cloud, as well as to exclude emergencies in the event of a loss of communication between the modules. The developed solutions make it possible to adapt the proposed control system for greenhouse complexes of various configurations and growing principles.


2010 ◽  
Vol 37 (5) ◽  
pp. 131-135
Author(s):  
I. P. Kazakov ◽  
V. I. Tsekhosh ◽  
M. E. Igonin ◽  
L. A. Fofanova ◽  
S. N. Shemyakin

Sign in / Sign up

Export Citation Format

Share Document