scholarly journals Spectrophotometric Determination of Benzalkonium Chloride using Sulfonphthaleins

Author(s):  
Yousry M. Issa ◽  
Nora S. Abdel-kader ◽  
Ahmed E. Zahran

A highly sensitive method for the quantitative determination of Benzalkonium chloride (BKC), in its pure form and pharmaceutical formulations, is described. The method involves four spectrophotometric ways for the determination of BKC via forming ionassociates with bromocresol green (BCG), bromophenol blue (BPB), bromothymol blue (BTB), and xylenol orange (XO). The study involves characterization of the ion-pairs formed between the BKC and the above-mentioned reagents Using UV-Visible and IR spectroscopy. In order to optimize the reaction conditions, the effects of pH, the quantity of reagent, time, and extracting solvent were studied. Statistical student’s t-test and F test showed insignificant systematic error between proposed and official methods. The antibacterial disinfectant Zora C Lozenges contains 0.01 mg Benzalkonium chloride, 1 mg Benzocaine, and 50 mg Vitamin C. as the active substance was analyzed at pH 8.5. The strategy was validated for linearity range, precision, accuracy, specificity, and limits of detection (LOD) and quantification (LOQ). Beer's law is obeyed over a wide concentration range (up to 145 ?g/mL in case of BCG method). LOD and LOQ values reached 2.38 and 7.2 ?g/mL, respectively, upon using BCG. The relative standard deviation (%RSD) was ?1.33% while correlation coefficient values (r) were ? 0.998. High molar absorptivity values and low values of Sandell's sensitivity were calculated indicating that the proposed methods are highly sensitive. Applying the validated methods to the analysis of BKC in antibacterial disinfectant Zora C Lozenges revealed that the drug was successfully resolved from the pharmaceutical formulation with recoveries ?95.5%.

2013 ◽  
Vol 10 (3) ◽  
pp. 1005-1013 ◽  
Author(s):  
Baghdad Science Journal

A simple, accurate, precise, rapid, economical and a high sensitive spectrophotometric method has been developed for the determination of tadalafil in pharmaceutical preparations and industrial wastewater samples, which shows a maximum absorbance at 204 nm in 1:1 ethanol-water. Beer's law was obeyed in the range of 1-7?g/ mL ,with molar absorptivity and Sandell ? s sensitivity of 0.783x105l/mol.cm and 4.97 ng/cm2respectively, relative standard deviation of the method was less than 1.7%, and accuracy (average recovery %) was 100 ± 0. 13. The limits of detection and quantitation are 0.18 and 0.54 µg .ml-1, respectively. The method was successfully applied to the determination of tadalafil in some pharmaceutical formulations (tablets) and industrial wastewater samples. The proposed method was validated by sensitivity and precision which proves suitability for the routine analysis of tadalafil in true samples.


2011 ◽  
Vol 8 (4) ◽  
pp. 1528-1535 ◽  
Author(s):  
F. Nekouei ◽  
Sh. Nekouei

A simple, fast, reproducible and sensitive method for the flotation- spectrophotometric determination of Al3+is reported. The apparent molar absorptivity (ε) of the ion associate was determined to be 8.35×104L mol-1cm-1. The calibration curve was linear in the concentration range of 1.0-50 ng mL-1of Al3+with a correlation coefficient of 0.9997. The limit of detection (LOD) was 0.621 ng mL. The relative standard deviation (RSD) at 10 and 30 ng mL-1of aluminium were 1.580 and 2.410% (n=7) respectively. The method was applied for measuring the amount of aluminium in water samples.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Ayman A. Gouda ◽  
Alaa S. Amin ◽  
Ragaa El-Sheikh ◽  
Amira G. Yousef

Simple, rapid, and extractive spectrophotometric methods were developed for the determination of some fluoroquinolones antibiotics: gemifloxacin mesylate (GMF), moxifloxacin hydrochloride (MXF), and enrofloxacin (ENF) in pure forms and pharmaceutical formulations. These methods are based on the formation of ion-pair complexes between the basic drugs and acid dyes, namely, bromocresol green (BCG), bromocresol purple (BCP), bromophenol blue (BPB), bromothymol blue (BTB), and methyl orange (MO) in acidic buffer solutions. The formed complexes were extracted with chloroform and measured at 420, 408, 416, 415, and 422 nm for BCG, BCP, BPB, BTB, and MO, respectively, for GMF; at 410, 415, 416, and 420 nm for BCP, BTB, BPB, and MO, respectively, for MXF; and at 419 and 414 nm for BCG and BTB, respectively, in case of ENF. The analytical parameters and their effects are investigated. Beer’s law was obeyed in the ranges 1.0–30, 1.0–20, and 2.0–24 μg mL−1for GMF, MXF, and ENF, respectively. The proposed methods have been applied successfully for the analysis of the studied drugs in pure forms and pharmaceutical formulations. Statistical comparison of the results with the reference methods showed excellent agreement and indicated no significant difference in accuracy and precision.


2018 ◽  
pp. 49-55
Author(s):  
Y. M. Zhuk ◽  
S. O. Vasyuk

In this investigation a visible spectrophotometric method for the determination of sotalol based on the absorbance of colored product of the reaction between sotalol hydrochloride and bromcresol purple in acetone medium at 399 nm measurement was developed. The optimal conditions for the quantitative determination of sotalol hydrochloride in the content of pharmaceutical drugs were established. The stoichiometric relationship coefficients between sotalol hydrochloride and bromcresol purple were determined. The validation of the worked out procedure on such validated characteristics as linearity, precision, accuracy and robustness was carried out. The aim. To develop a highly sensitive, easy to use, cost-effective and valid method for quantitative determination of sotalol hydrochloride in dosage forms. The analysis method. Visible spectrophotometry. The analytical parameters such as molar absorptivity, Beer’s law limits and Sandell’s sensitivity values were calculated. The developed methods give the result with repeatability sufficient for dependable determination the investigated substance in pharmaceutical formulations. Accuracy established by analyte addition technique. Determined factors that influence on the absorbance value: reagent quantity and timing stability. Sample solutions stable during 30 min. Addition to sample solution ± 10% bromcresol purple solution is not change the absorbance value. Established that reaction between sotalol hydrochloride and bromcresol purple proceeds in acetone medium at room temperature. Molar absorption coefficient is 2,62∙103.


2001 ◽  
Vol 69 (2) ◽  
pp. 151-160
Author(s):  
A. Amin ◽  
H. Saleh

A simple spectrophotometric methods has been developed for the determination of nortriptyline hydrochloride in pure and in pharmaceutical formulations based on the formation of ion-pair complexes with sudun II (SII), sudan (IV) (SIV) and sudan black B (SBB). The selectivity of the method was improved through extraction with chloroform. The optimum conditions for complete extracted colour development were assessed. The absorbance measurements were made at 534, 596 and 649 nm for SII, SIV and SBB complexes, respectively. The calibration graph was linear in the ranges 0.5- 280. 0.5- 37.5 and 0.5 – 31.0 μg ml−1 of the drug usiny the same reagents, respectively. The precision of the procedure was checked by calculating the relative standard deviation of ten replicate determinations on 15 μg ml−1 of nortriptyline HCI and was found to be 1.7, 1.3 and 1.55% using SII, SIV, and SBB complexes, respectively. The molar absorptivity and Sandell sensitivity for each ion-pair were calculated. The proposed methods were successfully applied to the deterniination of pure nortriptyline HCI and in pharmaceutical formulations, and the results demonstrated that the method is equally accurate, precise and reproducible as the official method.


Author(s):  
El Sheikh R ◽  
Hassan W. S. ◽  
Gouda A. A. ◽  
Al OwairdhiA. ◽  
Al Hassani K K H

Two simple, sensitive, accurate, precise and economical spectrophotometric methods have been developed and validated for the determination of rizatriptan benzoate (RZT) in pure form and pharmaceutical formulations. These methods were based on the formation of charge transfer complex between RZT as n-electron donor and alizarin red S (ARS) or quinalizarin (Quinz) as π-acceptor in methanol to form highly colored chromogens which showed an absorption maximum at 532 and 574 nm using ARS and Quinz, respectively. The optimization of the reaction conditions such as the type of solvent, reagent concentration and reaction time were investigated. Under the optimum conditions, Beer’s law is obeyed in the concentration ranges 1.0-16 and 2.0-20 g mL-1 using ARS and Quinz, respectively with good correlation coefficient (r2 ≥ 0.9996) and with a relative standard deviation (RSD% ≤ 1.16). The molar absorptivity, Sandell sensitivity, detection and quantification limits were also calculated. The methods were successfully applied to the determination of RZT in its pharmaceutical formulations and the validity assesses by applying the standard addition technique. Results obtained by the proposed methods for the pure RZT and commercial tablets agreed well with those obtained by the reported method.


2009 ◽  
Vol 63 (6) ◽  
Author(s):  
Alaa Amin ◽  
Hassan Dessouki ◽  
Moustafa Moustafa ◽  
Mohammed Ghoname

AbstractA spectrophotometric procedure for the determination of sertraline hydrochloride (Sert) and/or clidinium bromide (Clid) in bulk sample and in dosage forms was developed. The purpose of this work was to develop a rapid, simple, inexpensive, precise, and accurate visible spectrophotometric method. The procedure is based on formation of an ion-pair complex by their reaction with bromocresol green (BCG), bromophenol blue (BPB), and bromothymol blue (BTB) in buffered aqueous solution at pH 3. The colored products are extracted into a polar solvent and measured spectrophotometrically at the optimum λmax for each complex. Optimization of different experimental conditions is described. Regression analysis of Beer-Lambert plots showed good correlation in the concentration range of 1–30 µg mL−1. The apparent molar absorptivity, Sandell sensitivity, detection and quantification limits were calculated. For more accurate analysis, Ringbom optimum concentration range of 2–27 µg mL−1 was used. The developed methods were successfully applied for the determination of sertraline hydrochloride and clidinium bromide in bulk in pharmaceutical formulations without any interference from common excipients. The procedure has the advantage of being highly sensitive and simple for the determination of the studied drugs, weak UV-absorbing compounds.


2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Tadele Eticha ◽  
Getu Kahsay ◽  
Teklebrhan Hailu ◽  
Tesfamichael Gebretsadikan ◽  
Fitsum Asefa ◽  
...  

A simple extractive spectrophotometric technique has been developed and validated for the determination of miconazole nitrate in pure and pharmaceutical formulations. The method is based on the formation of a chloroform-soluble ion-pair complex between the drug and bromocresol green (BCG) dye in an acidic medium. The complex showed absorption maxima at 422 nm, and the system obeys Beer’s law in the concentration range of 1–30 µg/mL with molar absorptivity of 2.285 × 104 L/mol/cm. The composition of the complex was studied by Job’s method of continuous variation, and the results revealed that the mole ratio of drug : BCG is 1 : 1. Full factorial design was used to optimize the effect of variable factors, and the method was validated based on the ICH guidelines. The method was applied for the determination of miconazole nitrate in real samples.


Sign in / Sign up

Export Citation Format

Share Document