Validated Spectrophotometric Determination of Rizatriptan Benzoate in Pharmaceutical Formulations using Alizarin Derivatives

Author(s):  
El Sheikh R ◽  
Hassan W. S. ◽  
Gouda A. A. ◽  
Al OwairdhiA. ◽  
Al Hassani K K H

Two simple, sensitive, accurate, precise and economical spectrophotometric methods have been developed and validated for the determination of rizatriptan benzoate (RZT) in pure form and pharmaceutical formulations. These methods were based on the formation of charge transfer complex between RZT as n-electron donor and alizarin red S (ARS) or quinalizarin (Quinz) as π-acceptor in methanol to form highly colored chromogens which showed an absorption maximum at 532 and 574 nm using ARS and Quinz, respectively. The optimization of the reaction conditions such as the type of solvent, reagent concentration and reaction time were investigated. Under the optimum conditions, Beer’s law is obeyed in the concentration ranges 1.0-16 and 2.0-20 g mL-1 using ARS and Quinz, respectively with good correlation coefficient (r2 ≥ 0.9996) and with a relative standard deviation (RSD% ≤ 1.16). The molar absorptivity, Sandell sensitivity, detection and quantification limits were also calculated. The methods were successfully applied to the determination of RZT in its pharmaceutical formulations and the validity assesses by applying the standard addition technique. Results obtained by the proposed methods for the pure RZT and commercial tablets agreed well with those obtained by the reported method.

Author(s):  
MONIR Z. SAAD ◽  
ATEF AMER ◽  
KHALED ELGENDY ◽  
BASEM ELGENDY

Objective: Two simple, sensitive and accurate spectrophotometric methods have been developed for the determination of sofosbuvir (SOF) and daclatasvir (DAC) in pure forms and pharmaceutical formulations. Methods: The proposed methods are based on the oxidation of SOF and DAC by a known excess of cerium(IV) ammonium nitrate in sulphuric acid medium followed by determination of unreacted cerium(IV) by adding a fixed amount of indigo carmine (IC) and alizarin red S (ARS) dyes followed by measuring the absorbance at 610 and 360 nm, respectively. The experimental conditions affecting the reaction were studied and optimized. Results: The beer’s law was obeyed in the concentration ranges of 0.2-3.0, 0.2-4.0 for SOF and 0.5-4.5 and 0.5-5.0 μg/ml for DAC using IC and ARS methods, respectively with a correlation coefficient ≥ 0.9991. The calculated molar absorptivity values are 2.354 × 104, 1.933 × 104 for SOF and 1.786 × 104 and 2.015 × 104 L/mol. cm for DAC using IC and ARS methods, respectively u. The limits of detection and quantification are also reported. Intra-day and inter-day precision and accuracy of the methods have been evaluated. Conclusion: The methods were successfully applied to the assay of SOF and DAC in tablets and the results were statistically compared with those of the reference method by applying Student’s t-test and F-test. No interference was observed from the common tablet excipients. The accuracy and reliability of the methods were further ascertained by performing recovery studies using the standard addition method.


2013 ◽  
Vol 19 (4) ◽  
pp. 529-540 ◽  
Author(s):  
Sheikh El ◽  
Ayman Gouda ◽  
Rham El-Azzazy

A facile, accurate, sensitive and validated spectrophotometric methods for the determination of sumatriptan succinate (SMT) in pure and in dosage forms are described. The methods are based on the formation of charge transfer products between SMT and chromogenic reagents 2,3-dichloro-5,6 dicyano-p-benzoquinone (DDQ), 7,7,8,8-tetracyanoquinodimethane(TCNQ), quinalizarin (Quiz) and alizarin red S (ARS) producing charge transfer complexes which showed an absorption maximum at 461, 841, 567 and 529 nm for DDQ, TCNQ, Quiz and ARS, respectively. The optimization of the reaction conditions such as the type of solvent, reagent concentration and reaction time were investigated. Beer?s law is obeyed in the concentration ranges 1.0-80 mg mL-1. The molar absorptivity, Sandell sensitivity, detection and quantification limits are also calculated. The correlation coefficient was ?0.9994 with a relative standard deviation (R.S.D.) of ? 1.08. The proposed methods were successfully applied for determination of sumatriptan in tablets with good accuracy and precision and without interferences from common additives by applying the standard addition technique. Developed methods have been validated statistically for their accuracy, precision, sensitivity, selectivity, robustness and ruggedness as per ICH guidelines and the results compared favourably with those obtained using the reported method.


2001 ◽  
Vol 69 (2) ◽  
pp. 151-160
Author(s):  
A. Amin ◽  
H. Saleh

A simple spectrophotometric methods has been developed for the determination of nortriptyline hydrochloride in pure and in pharmaceutical formulations based on the formation of ion-pair complexes with sudun II (SII), sudan (IV) (SIV) and sudan black B (SBB). The selectivity of the method was improved through extraction with chloroform. The optimum conditions for complete extracted colour development were assessed. The absorbance measurements were made at 534, 596 and 649 nm for SII, SIV and SBB complexes, respectively. The calibration graph was linear in the ranges 0.5- 280. 0.5- 37.5 and 0.5 – 31.0 μg ml−1 of the drug usiny the same reagents, respectively. The precision of the procedure was checked by calculating the relative standard deviation of ten replicate determinations on 15 μg ml−1 of nortriptyline HCI and was found to be 1.7, 1.3 and 1.55% using SII, SIV, and SBB complexes, respectively. The molar absorptivity and Sandell sensitivity for each ion-pair were calculated. The proposed methods were successfully applied to the deterniination of pure nortriptyline HCI and in pharmaceutical formulations, and the results demonstrated that the method is equally accurate, precise and reproducible as the official method.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ayman A. Gouda ◽  
Ragaa El Sheikh ◽  
Rham M. El-Azzazy

Three simple, sensitive, and accurate spectrophotometric methods have been developed for the determination of eletriptan hydrobromide (ELT) in pure and dosage forms. The first two methods are based on charge transfer complex formation between ELT and chromogenic reagents quinalizarin (Quinz) and alizarin red S (ARS) producing charge transfer complexes which showed an absorption maximum at 569 and 533 nm for Quinz and ARS, respectively. The third method is based on the formation of ion-pair complex between ELT with molybdenum(V)-thiocyanate inorganic complex in hydrochloric acid medium followed by extraction of the colored ion-pair with dichloromethane and measured at 470 nm. Different variables affecting the reactions were studied and optimized. Beer's law is obeyed in the concentration ranges 2.0–18, 1.0–8.0, and 2.0–32 μg mL−1for Quinz, ARS, and Mo(V)-thiocyanate, respectively. The molar absorptivity, Sandell sensitivity, detection, and quantification limits are also calculated. The correlation coefficients were ≥0.9994 with a relative standard deviation (R.S.D%.) of ≤0.925. The proposed methods were successfully applied for simultaneous determination of ELT in tablets with good accuracy and precision and without interferences from common additives, and the validity is assessed by applying the standard addition technique, which is compared with those obtained using the reported method.


2007 ◽  
Vol 90 (3) ◽  
pp. 686-692 ◽  
Author(s):  
Ragaa El-Shiekh ◽  
Alaa S Amin ◽  
Faten Zahran ◽  
Ayman A Gouda

Abstract Three simple, sensitive, and reproducible spectrophotometric methods (AC) for the determination of pipazethate hydrochloride (PiCl) in pure form and in pharmaceutical formulations are described. The first and second methods, A and B, are based on the oxidation of the drug by Fe3+ in the presence of o-phenanthroline (o-phen) or bipyridyl (bipy). The formation of tris-complex upon reactions with Fe3+-o-phen and/or Fe3+-bipy mixture in an acetate buffer solution of the optimum pH values was demonstrated at 510 and 522 nm, respectively, with o-phen and bipy. The third method, C, is based on the reduction of Fe(III) by PiCl in acid medium and subsequent interaction of Fe(II) with ferricyanide to form Prussian blue, which exhibits an absorption maximum at 750 nm. The concentration ranges are from 0.5 to 8, 2 to 16, and 3 to 15 g/mL for Methods AC, respectively. For more accurate analysis, Ringbom optimum concentration ranges were calculated. The molar absorptivity, Sandell sensitivity, and detection and quantitation limits were calculated. The developed methods were successfully applied to the determination of PiCl in bulk and pharmaceutical formulations without any interference from common excipients. The relative standard deviations were 0.83% with recoveries of 98.9101.15%.


2021 ◽  
Vol 40 (1) ◽  
pp. 108-126
Author(s):  
Jumana W. Ammar ◽  
Zainab A. Khan ◽  
Marwa N. Ghazi ◽  
Naser A. Naser

Abstract A modern development discusses the synthesis and validity of simple, sensitive, and versatile spectrophotometric methods for Bi(III) and Al(III) determination in pharmaceutical formulations have been conducted. In the present paper, 4-(4 acetamidophenylazo) pyrogallol has been synthesized as a new organic compound, 4-APAP, by coupling pyrogallol in a regulated pH medium with diazotized p-aminoacetanilide. 4-APAP was identified by methods of FT-IR, 1H-NMR, 13C-NMR, and thermal analysis (thermogravimetry and differential scanning calorimetry). Solvatochromic activity was also studied in solvents with different polarities. The Kamlet and Taft linear solvation energy relationship was used to correlate shifts in UV-Visible spectra of 4-APAP with Kamlet-Taft parameters (α, β, and π*). The optimum assay conditions showed linearity from 0.3–13 to 0.5–11 μg·mL−1 for Bi(III) and Al(III), respectively. Molar absorptivity values were 3.365 × 104 and 0.356 × 104 L·mol−1·cm−1 for Bi(III) and Al(III), with similar Sandell's sensitivity measures of 0.006 and 0.008 μg·cm−2. Detection limits and quantification limits were 0.013 and 0.043 μg·mL−1 for Bi(III), respectively, and 0.018 and 0.059 μg·mL−1 for Al(III) with the relative standard deviation for determination of both metal ions using 4-APAP probe being <2.0%. The validity, accuracy, and efficiency of the approaches were demonstrated by the determination of Bi(III) and Al(III) in different formulations.


Author(s):  
Noha Salem Rashed ◽  
Amany Mohmed Abdelazeem ◽  
Fatma Ahmed Fouad

Two simple, accurate and precise spectrophotometric methods were developed for the determination of two veterinary drugs, ceftiofur and tulathromycin in pure form as well as in pharmaceutical formulations. The first one (Method A) based on the reducing action of ceftiofur on Fe (ΙΙΙ) to Fe (ΙΙ) in its complex with 1, 10- phenanthroline (ferrin complex) to give the orange-red colored ferroin complex that exhibits an absorption maximum at 511 nm. Ceftiofur exhibited good linearity in the concentration range of 0.3-3.0 μg mL−1.The second method (Method B) depended on formation of a binary complex between tulathromycin and eosin Y in in the presence of carboxy methylcellulose as surfactant. Under the optimum conditions, the binary complex showed absorption maxima at 556 nm. The method obeyed Beer’s law over concentration range of 1.0–15.0 μg mL−1.  The proposed methods were used for determination of the studied drugs in pharmaceutical formulation; maxfur® powder and draxxin® injections with mean recoveries of 99.57and 99.71%, respectively. The validity of the methods was further proved by applying the standard addition technique. A proposal of the reactions pathways were described.


2012 ◽  
Vol 18 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Nagaraj Prashanth ◽  
Kanakapura Basavaiah ◽  
Sameer Abdulrahman ◽  
Nagaraju Rajendraprasad ◽  
Basavaiah Vinay

Two highly sensitive spectrophotometric methods are proposed for the quantification of atenolol (ATN) in pure drug as well as in pharmaceutical formulations. The methods are based on the bromination reaction of ATN with a known excess of bromate-bromide mixture in acid medium followed by the determination of unreacted bromine. The residual bromine is determined by its reaction with excess iodide and the liberated iodine (I3?) is either measured at 360 nm (method A) or reacted with starch followed by the measurement of the starch-iodine chromogen at 570 nm (method B). Under the optimum conditions, ATN could be assayed in the concentration ranges of 0.5-9.0 and 0.3-6.0?g mL-1 for method A and method B, respectively, with corresponding molar absorptivity values of 2.36?104 and 2.89?104 L/mol.cm. Sandell?s sensitivity values are found to be 0.0113 and 0.0092 ?g/cm2 for method A and method B, respectively. The proposed methods were successfully applied to the analysis of different commercial brands of pharmaceutical formulations and the results obtained by the proposed methods were in good agreement with those obtained using the reference method. The reliability of the methods was further ascertained by recovery studies using standard- addition method.


2018 ◽  
Vol 15 (2) ◽  
pp. 6186-6198
Author(s):  
Abdul Aziz Ramadan ◽  
Souad Zeino

A simple, direct and accurate spectrophotometric method has been developed for the determination of Glimepiride (GLM) in pure and pharmaceutical formulations by complex formation with bromocresol purple (BCP). The method involves the formation of a yellow ion-pair complex between BCP with glimepiride at pH<3,8; after reacting GLM with Na2CO3 to give C24H33N4H+O5NaS which is extracted by chloroform. The formed complex [GLM]:[ BCP] was measured at lmax 418 nm against the reagent blank prepared in the same manner. Variables were studied in order to optimize the reaction conditions. Molar absorptivity (e) for complex was  20600  L.mol-1.cm-1. Beer’s law was obeyed in the concentration range of  1.226 – 46.608   mg.mL-1 in present of 5.0x10-4 mol/l of BCP with good correlation coefficient (R2= 0.9997). The relative standard deviation did not exceed 3.6%. The limit of detection (LOD) and the limit of quantification (LOQ) were 0.15 and 0.46 mg.mL-1, respectively. The proposed method was validated for specificity, linearity, precision and accuracy, repeatability, sensitivity (LOD and LOQ)  and robustness. The developed method is applicable for the determination of GLM in  pure and different dosage forms with average assay of 98.8 to 102.0% and the results are in good agreement with those obtained by the  RP-HPLC reference method.  


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Kudige N. Prashanth ◽  
Kanakapura Basavaiah

Rizatriptan is a new selective 5-HT1B/1D agonist which is used in the treatment of migraine headaches. Two simple, rapid, accurate, and economical spectrophotometric methods are described for the determination of rizatriptan benzoate (RTB) in its pure form and pharmaceutical preparations. These methods are based on the charge-transfer complexation reaction between rizatriptan benzoate as n-electron donor and p-chloranilic acid (p-CA) or 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as π-acceptor to form highly colored chromogens. The chromogens formed by the reaction between RTB and p-CA peaked at 530 nm (method A) and that formed by the reaction between RTB and DDQ peaked at 590 nm (method B). Under the optimum conditions Beer’s law is obeyed in the concentration range of 14–245 μg mL−1 for method A and 4–70 μg mL−1 for method B. The coefficient of correlation was found to be 0.9999 for both methods. The molar absorptivity, Sandell sensitivity, limits of detection, and quantification are also reported. The stoichiometric relationship determined by Job’s continuous method was found to be 1 : 1 (drug : reagent) for both methods. Both methods were applied to determination of RTB in the pharmaceutical formulations. Results of the analysis were validated statistically.


Sign in / Sign up

Export Citation Format

Share Document