scholarly journals Utilizing reinforcement learning and deep neural networks to optimize non-pharmaceutical COVID-19 interventions in Florida

2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Megan Yang ◽  
Leya Joykutty

Under the umbrella of artificial intelligence is machine learning that allows a system to improve through experience without any explicit programs telling it to. It is able to find patterns in massive amounts of data from works, images, numbers, to statistics. One approach to machine learning is neural networks in which the computer learns to finish a task by analyzing training samples. Another approach used in this study is reinforcement learning which manipulates it environment to discover errors and rewards.      This study aimed developed a deep neural network and used reinforcement learning to develop a system that was able to predict whether the cases will increase or decrease, then using that information, was able to predict which actions would most effectively cause a decline in cases while keeping things like economy and education in mind for a better long term effect. These models were made based on Florida using eight different counties’ data including things like mobility, temperature, dates of government actions, etc. Based on this information, data exploration and feature engineering was conducted to add dimensions that would further the accuracy of the neural network. The reinforcement learning model’s actions consisted of first, a shutdown for about two months before reopening schools and allowing things to return to normal. Then interestingly the model decided to keep school operating in a hybrid model with some students going back to school while others continue to study remotely.   

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Idris Kharroubi ◽  
Thomas Lim ◽  
Xavier Warin

AbstractWe study the approximation of backward stochastic differential equations (BSDEs for short) with a constraint on the gains process. We first discretize the constraint by applying a so-called facelift operator at times of a grid. We show that this discretely constrained BSDE converges to the continuously constrained one as the mesh grid converges to zero. We then focus on the approximation of the discretely constrained BSDE. For that we adopt a machine learning approach. We show that the facelift can be approximated by an optimization problem over a class of neural networks under constraints on the neural network and its derivative. We then derive an algorithm converging to the discretely constrained BSDE as the number of neurons goes to infinity. We end by numerical experiments.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-25
Author(s):  
Yongsen Ma ◽  
Sheheryar Arshad ◽  
Swetha Muniraju ◽  
Eric Torkildson ◽  
Enrico Rantala ◽  
...  

In recent years, Channel State Information (CSI) measured by WiFi is widely used for human activity recognition. In this article, we propose a deep learning design for location- and person-independent activity recognition with WiFi. The proposed design consists of three Deep Neural Networks (DNNs): a 2D Convolutional Neural Network (CNN) as the recognition algorithm, a 1D CNN as the state machine, and a reinforcement learning agent for neural architecture search. The recognition algorithm learns location- and person-independent features from different perspectives of CSI data. The state machine learns temporal dependency information from history classification results. The reinforcement learning agent optimizes the neural architecture of the recognition algorithm using a Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM). The proposed design is evaluated in a lab environment with different WiFi device locations, antenna orientations, sitting/standing/walking locations/orientations, and multiple persons. The proposed design has 97% average accuracy when testing devices and persons are not seen during training. The proposed design is also evaluated by two public datasets with accuracy of 80% and 83%. The proposed design needs very little human efforts for ground truth labeling, feature engineering, signal processing, and tuning of learning parameters and hyperparameters.


Author(s):  
E. Yu. Shchetinin

The recognition of human emotions is one of the most relevant and dynamically developing areas of modern speech technologies, and the recognition of emotions in speech (RER) is the most demanded part of them. In this paper, we propose a computer model of emotion recognition based on an ensemble of bidirectional recurrent neural network with LSTM memory cell and deep convolutional neural network ResNet18. In this paper, computer studies of the RAVDESS database containing emotional speech of a person are carried out. RAVDESS-a data set containing 7356 files. Entries contain the following emotions: 0 – neutral, 1 – calm, 2 – happiness, 3 – sadness, 4 – anger, 5 – fear, 6 – disgust, 7 – surprise. In total, the database contains 16 classes (8 emotions divided into male and female) for a total of 1440 samples (speech only). To train machine learning algorithms and deep neural networks to recognize emotions, existing audio recordings must be pre-processed in such a way as to extract the main characteristic features of certain emotions. This was done using Mel-frequency cepstral coefficients, chroma coefficients, as well as the characteristics of the frequency spectrum of audio recordings. In this paper, computer studies of various models of neural networks for emotion recognition are carried out on the example of the data described above. In addition, machine learning algorithms were used for comparative analysis. Thus, the following models were trained during the experiments: logistic regression (LR), classifier based on the support vector machine (SVM), decision tree (DT), random forest (RF), gradient boosting over trees – XGBoost, convolutional neural network CNN, recurrent neural network RNN (ResNet18), as well as an ensemble of convolutional and recurrent networks Stacked CNN-RNN. The results show that neural networks showed much higher accuracy in recognizing and classifying emotions than the machine learning algorithms used. Of the three neural network models presented, the CNN + BLSTM ensemble showed higher accuracy.


Author(s):  
Abhinav Verma

We study the problem of generating interpretable and verifiable policies for Reinforcement Learning (RL). Unlike the popular Deep Reinforcement Learning (DRL) paradigm, in which the policy is represented by a neural network, the aim of this work is to find policies that can be represented in highlevel programming languages. Such programmatic policies have several benefits, including being more easily interpreted than neural networks, and being amenable to verification by scalable symbolic methods. The generation methods for programmatic policies also provide a mechanism for systematically using domain knowledge for guiding the policy search. The interpretability and verifiability of these policies provides the opportunity to deploy RL based solutions in safety critical environments. This thesis draws on, and extends, work from both the machine learning and formal methods communities.


Author(s):  
Qin Song ◽  
Yu-Jun Zheng ◽  
Jun Yang

Morbidity prediction can be useful in improving the effectiveness and efficiency of medical services, but accurate morbidity prediction is often difficult because of the complex relationships between diseases and their influencing factors. This study investigates the effects of food contamination on gastrointestinal-disease morbidities using eight different machine-learning models, including multiple linear regression, a shallow neural network, and three deep neural networks and their improved versions trained by an evolutionary algorithm. Experiments on the datasets from ten cities/counties in central China demonstrate that deep neural networks achieve significantly higher accuracy than classical linear-regression and shallow neural-network models, and the deep denoising autoencoder model with evolutionary learning exhibits the best prediction performance. The results also indicate that the prediction accuracies on acute gastrointestinal diseases are generally higher than those on other diseases, but the models are difficult to predict the morbidities of gastrointestinal tumors. This study demonstrates that evolutionary deep-learning models can be utilized to accurately predict the morbidities of most gastrointestinal diseases from food contamination, and this approach can be extended for the morbidity prediction of many other diseases.


Author(s):  
V. N. Gridin ◽  
I. A. Evdokimov ◽  
B. R. Salem ◽  
V. I. Solodovnikov

The analysis of key stages, implementation features and functioning principles of the neural networks, including deep neural networks, has been carried out. The problems of choosing the number of hidden elements, methods for the internal topology selection and setting parameters are considered. It is shown that in the training and validation process it is possible to control the capacity of a neural network and evaluate the qualitative characteristics of the constructed model. The issues of construction processes automation and hyperparameters optimization of the neural network structures are considered depending on the user's tasks and the available source data. A number of approaches based on the use of probabilistic programming, evolutionary algorithms, and recurrent neural networks are presented.


2004 ◽  
Vol 4 (1) ◽  
pp. 143-146 ◽  
Author(s):  
D. J. Lary ◽  
M. D. Müller ◽  
H. Y. Mussa

Abstract. Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the dataset from the Halogen Occultation Experiment (HALOE) which has continuously observed CH4  (but not N2O) from 1991 till the present. The neural network Fortran code used is available for download.


2020 ◽  
Author(s):  
Xian Wang ◽  
Anshuman Kumar ◽  
Christian Shelton ◽  
Bryan Wong

Inverse problems continue to garner immense interest in the physical sciences, particularly in the context of controlling desired phenomena in non-equilibrium systems. In this work, we utilize a series of deep neural networks for predicting time-dependent optimal control fields, <i>E(t)</i>, that enable desired electronic transitions in reduced-dimensional quantum dynamical systems. To solve this inverse problem, we investigated two independent machine learning approaches: (1) a feedforward neural network for predicting the frequency and amplitude content of the power spectrum in the frequency domain (i.e., the Fourier transform of <i>E(t)</i>), and (2) a cross-correlation neural network approach for directly predicting <i>E(t)</i> in the time domain. Both of these machine learning methods give complementary approaches for probing the underlying quantum dynamics and also exhibit impressive performance in accurately predicting both the frequency and strength of the optimal control field. We provide detailed architectures and hyperparameters for these deep neural networks as well as performance metrics for each of our machine-learned models. From these results, we show that machine learning approaches, particularly deep neural networks, can be employed as a cost-effective statistical approach for designing electromagnetic fields to enable desired transitions in these quantum dynamical systems.


2021 ◽  
Vol 19 (3) ◽  
pp. 55-64
Author(s):  
K. N. Maiorov ◽  

The paper examines the life cycle of field development, analyzes the processes of the field development design stage for the application of machine learning methods. For each process, relevant problems are highlighted, existing solutions based on machine learning methods, ideas and problems are proposed that could be effectively solved by machine learning methods. For the main part of the processes, examples of solutions are briefly described; the advantages and disadvantages of the approaches are identified. The most common solution method is feed-forward neural networks. Subject to preliminary normalization of the input data, this is the most versatile algorithm for regression and classification problems. However, in the problem of selecting wells for hydraulic fracturing, a whole ensemble of machine learning models was used, where, in addition to a neural network, there was a random forest, gradient boosting and linear regression. For the problem of optimizing the placement of a grid of oil wells, the disadvantages of existing solutions based on a neural network and a simple reinforcement learning approach based on Markov decision-making process are identified. A deep reinforcement learning algorithm called Alpha Zero is proposed, which has previously shown significant results in the role of artificial intelligence for games. This algorithm is a decision tree search that directs the neural network: only those branches that have received the best estimates from the neural network are considered more thoroughly. The paper highlights the similarities between the tasks for which Alpha Zero was previously used, and the task of optimizing the placement of a grid of oil producing wells. Conclusions are made about the possibility of using and modifying the algorithm of the optimization problem being solved. Аn approach is proposed to take into account symmetric states in a Monte Carlo tree to reduce the number of required simulations.


Sign in / Sign up

Export Citation Format

Share Document