DETERMINATION OF TECHNOLOGICAL PARAMETERS OF CULINARY PRODUCTS PRODUCTION USING MIXTURES AND EMULSIONS FOR ADDITIVE TECHNOLOGIES

Author(s):  
A. Meliaschenya ◽  
I. Kaltovich ◽  
G. Pinchuk

The article presents the results of research on the determination of rational technological parameters for the production of culinary products using dry mixtures and emulsions based on animal raw materials for additive technologies. It was found that when making products using mixtures and emulsions based on broiler chicken meat, as well as a combination of broiler chicken meat and pork, pork and beef (ratio 1:1) rational height of the layer, which makes it possible to ensure stability and safety of the product shape (with a fixed diameter of the opening of the culinary syringe – 7 mm and the optimal length of the layer - 100 mm), is from 14–21 mm (with a layer width of 7 mm) and up to 133–154 mm (with a layer width of 98 mm), which allows for improved structural and mechanical (SSL – 1090.7–1099.9 Pa) and functional and technological indicators of these products (WHC – 92.7–97.5%). The rational sequence of application and the duration of chopping of the main and auxiliary raw materials for the manufacture of emulsions, the duration of preparation (3 minutes), the degree of hydration (1:2 – 1:3) and the temperature of water for the reduction of dry mixtures (60±1° C) were established, which made it possible to develop technological schemes for the production of culinary products using additive technologies.

Author(s):  
A. V. Meliashchenia ◽  
I. V. Kaltovich

Study of possibilities of using various types of raw materials as fillers for food 3D printers is relevant for development of additive technologies in the field of food production. Currently, the properties are studied to the greatest extent and the ingredients are widely used for confectionery production in the world and, at the same time, the process properties of raw materials of animal origin, in particular meat raw material, as one of the main sources of protein are of greater interest. Process capabilities of meat raw material were studied for this purpose for formulating emulsions or mixtures suitable for use as a raw material for food 3D printer. Formulations of emulsions and dry mixes are developed based on broiler chicken meat, as well as combinations of broiler chicken meat and pork, pork and beef (ratio 1 : 1) for manufacture of semi-finished products, as well as production technologies. It was determined that it is advisable to add structure-forming components to formulations of emulsions in a dry form, which provides improved functional-and-process and structural-and-mechanical indicators in comparison with hydrated and gel forms. It was determined that 15% of hydrolyzed connective tissue or 10 % of hydrolyzed pork skin can reduce the level of structure-forming components in emulsion formulations, and also has a positive effect on reducing the cost price of emulsions while maintaining rational functional-and-process and structural-and-mechanical parameters. It has been revealed that adding 6-12 % of WPS-UF-80, 5-10 % of dry whey or 4-8 % of fat free milk powder into emulsion formulations allows reducing the level of structure-forming ingredients in the formulations. These mixtures and emulsions used as raw materials for food 3D printers will ensure production of innovative group of meat products using additive technologies in the Republic of Belarus.


Author(s):  
I. Kaltovich

The article presents the results of research on the determination of rational technological parameters for the production of chopped semi-products using emulsions from collagen-containing raw materials fermented by bacteria of the genus Lactobacillus. Water dosages are installed in the composition of chopped semi-finished products: 12% – with emulsions from pork skin and tails and 11% - with emulsion from connective tissue. Duration of ingredients mixing (5 minutes), sequence of raw materials laying during manufacture of articles, as well as duration of heat treatment of chopped semiproducts is determined: 25 minutes – during steaming (t = 95–100 °С), 20 minutes – during baking (t = 180 °C), 15 minutes – during frying (t = 110 °C), while recommended methods of bringing semifinished products to culinary readiness are steam treatment and baking, which allow for improved functional and technological (TUS – 79.3-81.8%, weight loss during heat treatment – 5.1–7.9%), structural and mechanical (PNS - 1413.9–1470.4 Pa) and organoleptic indicators (juiciness, appearance, consistency, taste, smell) of these products (9 points according to the 9-point system).


2019 ◽  
Vol 296 ◽  
pp. 9-14
Author(s):  
Theodor Staněk

Cement production belongs to the most important branch of industry. It is marked out by processing of great quantity of natural raw materials and of considerable energetic demand. Not only the intensification of the contemporary production processes is the permanent effort of the cement industry, but also the search for new energy less demanding methods. The paper is focused on one of the most important components of the intensification of cement production – on the preparation of raw meal. It mainly deals with the influence of granulometry and microhomogeneity of the input raw materials on the quality and economy of the process of production and on the final product. The study was carried out mainly by methods of optical microscopy and the determination of technological parameters of cements. It has been found that a change in granulometry of raw meal has a significant impact on the formation rate of the clinker phases. Subsequently, the grindability of the clinker and the strength of the cement are influenced, especially in the short-term hydration. Change of granulometry and homogeneity of raw meal can greatly optimize the quality and economy of the cement production process.


2020 ◽  
Vol 315 ◽  
pp. 07008
Author(s):  
Aleksandr Bakhtin ◽  
Nikolai Lyubomirskiy ◽  
Sergey Fedorkin ◽  
Tamara Bakhtina

The paper presents research on the development of building materials with low level of CO2 emissions based on technogenic recycled materials. The paper addresses the determination of optimal formulation and technological parameters of obtaining materials based on lime dust generated by mechanical deposition in cyclones and bag filters of shaft furnaces, as well as finely dispersed marble limestone with a fraction of up to 5 mm. Studies have shown that it is possible to obtain carbonized material with compressive strength of more than 40 MPa from this recycled material by forced carbonization used during three hours. Moreover, to obtain such numbers, the optimal content of lime dust in raw materials should be in the range of 35-40% wt. when the water content of the mixture is 6-7% wt. The carbonized material obtained with the indicated technological parameters will have an average density of 1.95-2.0 g/cm3 and water absorption by weight of not more than 12%.


Author(s):  
O. Yu. Kichigina

At production of stainless steel expensive alloying elements, containing nickel, are used. To decrease the steel cost, substitution of nickel during steel alloying process by its oxides is an actual task. Results of analysis of thermodynamic and experimental studies of nickel reducing from its oxide presented, as well as methods of nickel oxide obtaining at manganese bearing complex raw materials enrichment and practice of its application during steel alloying. Technology of comprehensive processing of complex manganese-containing raw materials considered, including leaching and selective extraction out of the solution valuable components: manganese, nickel, iron, cobalt and copper. Based on theoretical and experiment studies, a possibility of substitution of metal nickel by concentrates, obtained as a result of hydrometallurgical enrichment, was confirmed. Optimal technological parameters, ensuring high degree of nickel recovery out of the initial raw materials were determined. It was established, that for direct steel alloying it is reasonable to add into the charge pellets, consisting of nickel concentrate and coke fines, that enables to reach the through nickel recovery at a level of 90%. The proposed method of alloying steel by nickel gives a possibility to decrease considerably steel cost at the expense of application of nickel concentrate, obtained out of tails of hydrometallurgical enrichment of manganese-bearing raw materials, which is much cheaper comparing with the metal nickel.


Author(s):  
Jiří Zimák ◽  
Kristýna Dalajková ◽  
Roman Donocik ◽  
Petr Krist ◽  
Daniel Reif ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document