Influence of different surface treatments on bond strength to resin composite, surface characteristics and cell adhesion of polyether-ether-ketone

Author(s):  
Maria do Carmo Aguiar Jordão Mainardi
2021 ◽  
Vol 24 (3) ◽  
Author(s):  
Boonlert Kukiattrakoon ◽  
Pitchaporn Kosago

Objective: This study was conducted to evaluate the shear bond strength (SBS) of resin composite on zirconia ceramic after different surface treatments and thermocycling. Material and Methods: Two hundred and seven zirconia specimens were divided into 9 groups and treated as follows: Group C-no treatment (served as the control); Group PC-Clearfil Ceramic primer (CP); Group PZ-Z-Prime Plus primer (ZP); Group A-sandblasted with 50 µm Al2O3 at 0.25 MPa for 20 s at a distance of 10 mm; Group AC-sandblasted and coated with CP; Group AZ-sandblasted and coated with ZP; Group L-GaAlAs diode laser with 808±5 mm wavelength, 3 watts power, and 10 Hz frequency; Group LC-GaAlAs diode laser coated with CP; and Group LZ-GaAlAs diode laser coated with ZP. All specimens were directly bonded with a resin composite cylinder using Adper Scotchbond Multi-purpose. Specimens were stored at 37ºC for 30 days and subjected to 2,500 thermocycles from 5ºC and 55ºC before the SBS was performed. One-way ANOVA and Tukey’s HSD test (=0.05) were performed. Surface topography changes were evaluated with a scanning electron microscope (SEM). Results: Sandblasting combined with CP or ZP (25.08±0.86 and 24.78±0.13 MPa, respectively) yielded the highest SBS and was significantly different from other methods (p<0.05). SEM showed various degrees of changes depending on different surface treatments. Conclusion: Surface treatment by sandblasting combined with a CP or ZP significantly provide the highest SBS between zirconia and resin composite. KEYWORDS Bond strength; Resin composite; Surface treatment; Zirconia ceramic.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 719
Author(s):  
Regina F. Villefort ◽  
Lilian C. Anami ◽  
Tiago M. B. Campos ◽  
Renata M. Melo ◽  
Luiz F. Valandro ◽  
...  

This study evaluated the influence of conventional and alternative surface treatments on wettability and the bond strength between polyether ether ketone (PEEK) and veneering resin. PEEK samples were randomly divided into five groups: sandblasting, tribochemical silica coating, etching with 98% sulfuric acid for 5 s, etching with 98% sulfuric acid for 30 s, and tribochemical silica coating plus heated silane. One of them was subjected to analysis by energy-dispersive X-ray spectroscopy (EDS) and ten were analyzed by goniometry (n = 5) and scanning electron microscopy (n = 5). Shear bond strength (SBS) was tested, and failure types were assessed. Data were analyzed using one-way ANOVA, followed by the Tukey and Duncan tests (all, α = 5%). Treatment with sandblasting and silica coating had the lowest SBS means (4.2 MPa and 4.4 MPa respectively), while sulfuric acid for 5 s showed the highest mean value (12.6 MPa), followed by sulfuric acid for 30 s and tribochemical + heated silane. All failures were classified as adhesive. The lowest mean contact angle was found for the polished (control) and etched group with 98% sulfuric acid for 30 s (83.9°). Etching with 98% sulfuric acid for 5 s increased the SBS between resin and PEEK.


2020 ◽  
Vol 14 (03) ◽  
pp. 456-461
Author(s):  
Rayhaneh Khalesi ◽  
Mahdi Abbasi ◽  
Zahra Shahidi ◽  
Masoumeh Hasani Tabatabaei ◽  
Zohreh Moradi

Abstract Objectives Advances in laboratory composites and their high wear resistance and fracture toughness have resulted in their growing popularity and increasing use for dental restorations. This study sought to assess the fracture toughness of three indirect composites bonded to dental substrate and polyether ether ketone (PEEK) polymer. Materials and Methods This in vitro study was conducted on two groups of dental and polymer substrates. Each substrate was bonded to three indirect composite resins. Sixty blocks (3 × 3 × 12 mm) were made of sound bovine anterior teeth and PEEK polymer. Sixty blocks (3 × 3 × 12 mm) were fabricated of CRIOS (Coltene, Germany), high impact polymer composite (HIPC; Bredent, Germany), and GRADIA (Indirect; GC, Japan) composite resins. Composites were bonded to dentin using Panavia F 2.0 (Kuraray, Japan). For bonding to PEEK, Combo.lign (Bredent) and Visio.Link (Bredent) luting cements were used. In all samples, a single-edge notch was created by a no. 11 surgical blade at the interface. The samples were subjected to 3,500 thermal cycles, and their fracture toughness was measured in a universal testing machine (Zwick/Roell, Germany) by application of four-point flexural load. Statistical Analysis Data were analyzed using one-way analysis of variance, Kruskal–Wallis. Results The fracture toughness of CRIOS–PEEK interface was significantly higher than HIPC–PEEK. The fracture toughness of GRADIA–PEEK was not significantly different from that of HIPC and CRIOS. The fracture toughness of GRADIA–dentin was significantly higher than HIPC–dentin. Conclusion Considering the limitations of this study, GRADIA has the highest bond strength to dentin, while CRIOS shows the highest bond strength to PEEK.


2021 ◽  
Vol 03 (02) ◽  
pp. 51-57
Author(s):  
Pydiahnaidu Bandaru ◽  
Nagesh Bolla ◽  
Rupadevi Garlapati ◽  
Sayesh Vemuri ◽  
Yamini Bandaru

Author(s):  
Siripan Simasetha ◽  
Awiruth Klaisiri ◽  
Tool Sriamporn ◽  
Kraisorn Sappayatosok ◽  
Niyom Thamrongananskul

Abstract Objective The study aimed to evaluate the shear bond strength (SBS) of lithium disilicate glass-ceramic (LDGC) and resin cement (RC) using different surface treatments. Materials and Methods LDGC blocks (Vintage LD Press) were prepared, etched with 4.5% hydrofluoric acid, and randomly divided into seven groups (n = 10), depending on the surface treatments. The groups were divided as follows: 1) no surface treatment (control), 2) Silane Primer (KS), 3) Signum Ceramic Bond I (SGI), 4) Signum Ceramic Bond I/Signum Ceramic Bond II (SGI/SGII), 5) experimental silane (EXP), 6) experimental silane/Signum Ceramic Bond II (EXP/SGII), and 7) Experimental/Adper Scotchbond Multi-purpose Adhesive (EXP/ADP). The specimens were cemented to resin composite blocks with resin cement and stored in water at 37 °C for 24 hours. The specimens underwent 5,000 thermal cycles and were subjected to the SBS test. Mode of failure was evaluated under the stereo microscope. Statistical Analysis Data were analyzed with Welch ANOVA and Games-Howell post hoc tests (α = 0.05). Results The highest mean SBS showed in group EXP/ADP (45.49 ± 3.37 MPa); however, this was not significantly different from group EXP/SGII (41.38 ± 2.17 MPa) (p ≥ 0.05). The lowest SBS was shown in the control group (18.36 ± 0.69 MPa). This was not significantly different from group KS (20.17 ± 1.10 MPa) (p ≥ 0.05). Conclusions The different surface treatments significantly affected the SBS value between LDGC and RC. The application of pure silane coupling agent with or without the application of an adhesive improved the SBS value and bond quality.


2019 ◽  
Vol 44 (2) ◽  
pp. E75-E82 ◽  
Author(s):  
APA Ayres ◽  
R Hirata ◽  
BM Fronza ◽  
BB Lopes ◽  
GMB Ambrosano ◽  
...  

SUMMARY Objectives: This study evaluated the effect of argon plasma treatment (PLA) and its combination with sandblasting (SAN), silanization (SIL), and hydrophobic bonding resin (HBR) application on the micro-shear bond strength of water-aged restorative resin composite to a newly placed composite, simulating restoration repair. Methods and Materials: Forty-five light-cured composite plates (20-mm long × 20-mm wide × 4-mm thick) were fabricated using a hybrid composite and stored at 37°C in distilled water for six months. The aged composite surfaces were treated according to the following experimental groups, varying both treatment and order of application: 1) SAN + SIL + HBR (control), 2) SAN + PLA for 30 seconds + SIL + HBR, 3) SAN + SIL + PLA + HBR, 4) PLA + SIL + HBR, 5) PLA + SIL, 6) PLA + HBR, 7) SIL + PLA + HBR, 8) SIL + PLA, and 9) PLA. After the surface treatments, four fresh resin composite cylinders (1.5-mm high × 1.5-mm diameter) of the same composite were built on each aged composite surface using a silicone mold. After water storage for 24 hours or one year, the specimens were submitted to shear bond strength testing. Data were statistically analyzed by two-way analysis of variance and Tukey's test (5%). Results: Groups 1, 2, and 4 presented significantly higher bond strength means at 24 hours, although group 4 did not differ from group 7. Groups 5, 8, and 9 demonstrated significantly lower means than the other groups. Even though groups 1 and 2 had a significant bond strength reduction after 1 year, they still demonstrated higher bond strength at one year of storage. Conclusions: While PLA application combined with surface treatment methods demonstrated high bond strength results, this treatment alone was not as beneficial as other methods that included SAN, SIL and HBR.


2020 ◽  
Vol 2 (1) ◽  
pp. 29-35
Author(s):  
Ulysses Lenz ◽  
Rodrigo Alessandretti ◽  
Alvaro Della Bona

Background: It’s shown that the clinical success of ceramic restorations much depends on the quality and durability of the bond to ceramic. For zirconia-based ceramics (Y-TZP), the surface treatment has a substantial impact on bond strength. Therefore, the bond strength evaluation of Y-TZP surface treatments is a requirement for predicting the clinical performance of such restorations. Objective: Evaluating the resin bond strength to Y-TZP after different surface treatments. Methods: Monolithic Y-TZP (Zenostar Zr Translucent, Wieland Dental, Rosbach vor der Höhe, Germany) blocks were bonded to resin composite blocks using a resin-based cement system after two Y-TZP surface treatments: APA- airborne particle abrasion with alumina particles; and CJ- silicatization (Cojet sand, 3M ESPE, St. Paul, MN, USA). A silane coupling agent and an adhesive system were applied to the treated Y-TZP surfaces and resin composite blocks were cemented (RelyX Ultimate, 3M ESPE, St. Paul, MN, USA) and light activated from all sides. These structures were cut to obtain bar-shaped specimens (n=30), which were stored in 37ºC distilled water for 7 days before microtensile testing. Specimens were loaded to failure under tension using a universal testing machine. Data was statistically analyzed using Students t test (α=0.05) and Weibull distribution. Failure modes were evaluated using optical (OM) and scanning electron microscopy (SEM). Results: Mean bond strength values (CJ= 25.7±8.2 MPa; APA= 22.0±6.3 MPa) were statistically similar (p>0.05). No difference was found for the characteristic strengths (σ0) and for Weibull moduli (m) since the confidence intervals (95% CI) overlapped. The bond strength values for a 5% failure probability (σ5%) were 12.4 (CJ) and 11.5 (APA). All fractures were due to cohesive failure within the adhesive cement system. Conclusion: Both Y-TZP surface treatments (CJ and APA) produced similar structural reliability and short-term bond strength to a resin cement system.


Sign in / Sign up

Export Citation Format

Share Document