scholarly journals Influence of Alternative and Conventional Surface Treatments on the Bonding Mechanism between PEEK and Veneering Resin for Dental Application

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 719
Author(s):  
Regina F. Villefort ◽  
Lilian C. Anami ◽  
Tiago M. B. Campos ◽  
Renata M. Melo ◽  
Luiz F. Valandro ◽  
...  

This study evaluated the influence of conventional and alternative surface treatments on wettability and the bond strength between polyether ether ketone (PEEK) and veneering resin. PEEK samples were randomly divided into five groups: sandblasting, tribochemical silica coating, etching with 98% sulfuric acid for 5 s, etching with 98% sulfuric acid for 30 s, and tribochemical silica coating plus heated silane. One of them was subjected to analysis by energy-dispersive X-ray spectroscopy (EDS) and ten were analyzed by goniometry (n = 5) and scanning electron microscopy (n = 5). Shear bond strength (SBS) was tested, and failure types were assessed. Data were analyzed using one-way ANOVA, followed by the Tukey and Duncan tests (all, α = 5%). Treatment with sandblasting and silica coating had the lowest SBS means (4.2 MPa and 4.4 MPa respectively), while sulfuric acid for 5 s showed the highest mean value (12.6 MPa), followed by sulfuric acid for 30 s and tribochemical + heated silane. All failures were classified as adhesive. The lowest mean contact angle was found for the polished (control) and etched group with 98% sulfuric acid for 30 s (83.9°). Etching with 98% sulfuric acid for 5 s increased the SBS between resin and PEEK.

2007 ◽  
Vol 330-332 ◽  
pp. 1365-1368
Author(s):  
W.H. Kim ◽  
H.J. Lee ◽  
Keun Woo Lee ◽  
Kwang Mahn Kim ◽  
Kyoung Nam Kim ◽  
...  

The purpose of this study was to evaluate the shear bond strength of composite resin to 4 different all-ceramic coping materials with 3 different surface treatments after thermocycling and without thermocycling. Three different surface treatments - sandblasting with 50 ㎛ alumina particles (AB); sandblasting with 50 ㎛ alumina particles and acid etching with 4% hydrofluoric acid (AE); sandblasting with 50 ㎛ alumina particles and 30 ㎛ alumina particles with tribochemical silica coating (SI) and silane application - were used on four different all-ceramic; Feldspatic ceramic (Duceram Plus); Lithium disilicate ceramic (IPS Empress2); Alumica ceramic (In-Ceram Alumina); Zirconia ceramic (Zi-Ceram) - substrates. Shear bond strength of restorative composite resin to substrate was tested after thermocycling and without thermocycling (n=10). Each specimen was subjected to a shear load at a crosshead speed of 2 ㎜/min until fracture. Two-way analysis of variance and Duncan multiple comparison test (α =0.05) were used to analyze the bond strength values. There were significant differences in the bond strengths for ceramic types (P<.001), surface treatments (P<.001), and thermocycling (P<.001). The Duncan analysis showed that the Si specimens had significantly higher bonding strengths than other specimens. The bond strength of composite resin decreased after thermocycling.


2015 ◽  
Vol 26 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Monique Kruger Guarita ◽  
Alexa Helena Köhler Moresca ◽  
Estela Maris Losso ◽  
Alexandre Moro ◽  
Ricardo Cesar Moresca ◽  
...  

The aim of this study was to evaluate the shear bond strength of rebonded ceramic brackets after subjecting the bracket base to different treatments. Seventy-five premolars were selected and randomly distributed into five groups (n=15), according to the type of the bracket surface treatment: I, no treatment, first bonding (control); II, sandblasting with aluminum oxide; III, sandblasting + silane; IV, silica coating + silane; and V, silicatization performed in a laboratory (Rocatec system). The brackets were fixed on an enamel surface with Transbond XT resin without acid etching. The brackets were then removed and their bases were subjected to different treatments. Thereafter, the brackets were fixed again to the enamel surface and the specimens were subjected to shear bond strength (SBS) test. The adhesive remnant index (ARI) was then evaluated for each specimen. Data were subjected to ANOVA and Tukey's tests (α=0.05). A statistically significant difference was observed only between Rocatec and the other groups; the Rocatec group showed the lowest SBS values. The highest SBS values were observed for group 1, without any significant difference from the values for groups II, III and IV. Most groups had a higher percentage of failures at the enamel-resin interface (score 1). It was concluded that the surface treatments of rebonded ceramic brackets were effective, with SBS values similar to that of the control group, except Rocatec group.


2016 ◽  
Vol 27 (6) ◽  
pp. 693-699 ◽  
Author(s):  
Regina Furbino Villefort Rocha ◽  
Lilian Costa Anami ◽  
Tiago Moreira Bastos Campos ◽  
Renata Marques de Melo ◽  
Rodrigo Othávio de Assunção e Souza ◽  
...  

Abstract Polyetheretherketone (PEEK) is a material suitable for frameworks of fixed dental prostheses. The effect of different surface treatments on the bond strength of PEEK bonded to human dentin was evaluated. One hundred PEEK cylinders (3 mm×3 mm) were divided into five groups according to surface treatment: silica coating, sandblasting with 45 μm Al2O3 particles, etching with 98% sulfuric acid for 5, 30 and for 60 s. These cylinders were luted with resin cement onto 50 human molars. First, each tooth was embedded in epoxy resin and the buccal dentin surface was exposed. Then, two delimited dentin areas (Æ:3 mm) per tooth were etched with 35% phosphoric acid and bonded with a two-step self-priming adhesive system. After the luting procedure the specimens were stored in water (24 h/37 °C). Shear bond strength (SBS) was tested using a universal testing machine (crosshead speed 0.5 mm/min; load cell 50 kgf) and failure types were assessed. Stress data (MPa) were analyzed using the Kruskal-Wallis test. Comparison of the proportions of different failure types was performed using the Bonferroni method (p<0.05). Kruskal-Wallis demonstrated that differences among groups were not significant (p=0.187). Mean SBS were as follows: silica coating, 2.12±1.12 MPa; sandblasting, 2.37±0.86 MPa; sulfuric acid 5 s, 2.28±1.75 MPa; sulfuric acid 30 s, 1.80±0.85 MPa; sulfuric acid 60 s, 1.67±0.94 MPa. Adhesive and mixed failures were predominant in all groups. Both physical and chemical surface treatments produced adhesion between PEEK, resin cement and dentin.


Author(s):  
Yeliz Hayran ◽  
Süha Kuşçu ◽  
Işıl SARIKAYA

Purpose: The aim of the study was to evaluate the shear bond strength (SBS) of different resin cements after zirconia surface treatments. Materials & Methods: A total of 60 zirconia discs (3x7mm) were prepared and divided into 3 main groups according to the surface treatments as control (C), sandblasting (SB), and tribochemical silica coating (TC). Main groups were divided into two subgroups according to two different resin cements were applied. No surface treatment was applied to the samples in C group. 50μm Al2O3 particles were applied to the samples in SB group for 10 s at a distance of 10 mm under 4 atm. TC group were tribochemically coated with alumina particles. Self-adhesive resin (ME) and multi-system dual-cure adhesive resin (NX3) was applied to the subgroups. After cementation, all samples were tested for SBS. SBS values were statistically analyzed by the Kruskal-Wallis and Mann-Whitney U tests. Results: Regardless of the cement type, SBS values of the surface treated samples were statistically different (p <0.001). Group SB was determined as the group with the highest SBS value. This group was followed by Group C and Group TC, respectively. The SBS values of the samples according to the resin cements and surface treatments were statistically significantly different (p<0.001). SBS values of the samples cemented with NX3 resin cement were found to be higher than the samples treated with ME resin cement. Conclusion: SB increased resin bond to zirconia. It is more advantageous to use multi-system dual cure adhesive cements in zirconia cementation.


2013 ◽  
Vol 38 (3) ◽  
pp. E58-E66 ◽  
Author(s):  
SD Cho ◽  
P Rajitrangson ◽  
BA Matis ◽  
JA Platt

SUMMARY Aged resin composites have a limited number of carbon-carbon double bonds to adhere to a new layer of resin. Study objectives were to 1) evaluate various surface treatments on repaired shear bond strength between aged and new resin composites and 2) to assess the influence of a silane coupling agent after surface treatments. Methods Eighty disk-shape resin composite specimens were fabricated and thermocycled 5000 times prior to surface treatment. Specimens were randomly assigned to one of the three surface treatment groups (n=20): 1) air abrasion with 50-μm aluminum oxide, 2) tribochemical silica coating (CoJet), or 3) Er,Cr:YSGG (erbium, chromium: yttrium-scandium-gallium-garnet) laser or to a no-treatment control group (n=20). Specimens were etched with 35% phosphoric acid, rinsed, and dried. Each group was divided into two subgroups (n=10): A) no silanization and B) with silanization. The adhesive agent was applied and new resin composite was bonded to each conditioned surface. Shear bond strength was evaluated and data analyzed using two-way analysis of variance (ANOVA). Results Air abrasion with 50-μm aluminum oxide showed significantly higher repair bond strength than the Er,Cr:YSGG laser and control groups. Air abrasion with 50-μm aluminum oxide was not significantly different from tribochemical silica coating. Tribochemical silica coating had significantly higher repair bond strength than Er,Cr:YSGG laser and the control. Er,Cr:YSGG laser and the control did not have significantly different repair bond strengths. Silanization had no influence on repair bond strength for any of the surface treatment methods. Conclusion Air abrasion with 50-μm aluminum oxide and tribochemical silica followed by the application of bonding agent provided the highest repair shear bond strength values, suggesting that they might be adequate methods to improve the quality of repairs of resin composites.


Author(s):  
Sílvia Fontes Do Amaral Pereira

O objetivo do presente estudo in vitro foi verificar, através de teste de cisalhamento, a resistência de união da liga Wironia®light, à base de níquel-cromo sem berílio, sujeita a diferentes tratamentos de superfície, às cerâmicas Vita VM13 e Noritake. Foram confeccionados oitenta espécimes cilíndricos metálicos, com o auxílio de uma matriz de aço, nas dimensões de 4 mm de diâmetro por 4 mm de altura. Os espécimes foram divididos em oito grupos (n=10), de acordo com o tipo de tratamento superficial aplicado à liga metálica e com o tipo de cerâmica testada. Estes foram avaliados de acordo com os critérios de resistência ao cisalhamento e, com o auxílio de microscopia óptica, foi avaliada a área de cerâmica remanescente aderida ao metal após a fratura. Os corpos-de-prova do G6 (fabricados em Cerâmica Noritake com jateamento-26,401 ± 11,637 MPa) apresentaram maior resistência ao cisalhamento (p> 0,05) enquanto que os menores valores foram registrados no G4 (Cerâmica Vita com utilização de broca-13,440 ± 7,766 MPa). G6 (19425,4 μm2) apresentou a maior área de cerâmica aderida ao metal (p> 0,05) enquanto que o G4 (2310,2 μm2) apresentou a menor área. Concluiu-se que G6 obteve os valores mais altos de resistência ao cisalhamento e de remanescente cerâmico aderido à superfície metálica enquanto que o G4 obteve os valores mais baixos. Descritores: Restaurações metalo-cerâmicas; ligas de níquel-cromo;porcelana dentária.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3920
Author(s):  
Allegra Comba ◽  
Andrea Baldi ◽  
Riccardo Michelotto Tempesta ◽  
Massimo Carossa ◽  
Letizia Perrone ◽  
...  

This study evaluated the effectiveness of chemical-based adhesive techniques on promoting immediate and aged bond strength between zirconia and luting cement. A total of 128 discs of zirconia were divided into 4 groups (n = 32) according to the adhesive treatment: tribochemical silica-coating followed by silane (Silane Primer, Kerr) and bonding (Optibond FL, Kerr), Signum Zirconia Bond (Hereaus), Z-Prime Plus (Bisco), and All-Bond Universal (Bisco). Composite cylinders were cemented on the zirconia sample with Duo-Link Universal (Bisco). Eight specimens per group were subjected to 10,000 thermocycles and subsequently bond strength was tested with shear-bond strength test. ANOVA test showed that artificial aging significantly affected the bond strength to zirconia. Bonferroni test highlighted a significant influence of adhesive treatment (Signum) on bond strength after thermocycling. It was concluded that 10-MDP-based bonding systems showed no improvement in initial bond strength compared with tribochemical treatment. All chemical bonding techniques tested in this study were influenced by thermocycling.


Sign in / Sign up

Export Citation Format

Share Document