scholarly journals Effect of tillage and crop establishment practices on performance of rice (Oryza sativa) under rice-wheat cropping system

2021 ◽  
Vol 23 (2) ◽  
pp. 170-174
Author(s):  
PRATIBHA KUMARI ◽  

A field experiment was conducted at Agricultural Research Farm, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh during Kharif season of 2018. The experiment consisted of six combinations of different tillage methods and crop establishment practices with four-time replicated under randomized block design. Zero tillage [direct seeded rice - wheat (Full CA; anchored residue of rice and wheat + mungbean residue retention)]showed significantly higher plant height, number of tillers m-2and chlorophyll content as compared to the other treatments, while the lowest values of these parameters were observed under conventional tillage (rice-wheat without residue). There was a steady rise in plant height and number of tillers with age of plant under all the treatments. The yield and its attributes were significantly higher under zero tillage [direct seeded rice - wheat (full CA; anchored residue of rice and wheat + mungbean residue retention)] followed by treatments zero tillage [direct seeded rice - wheat (full CA; anchored residue of rice and wheat)]. While, the poor yield was reported in conventional tillage (rice-wheat without residue). Zero tillage [direct seeded rice - wheat (full CA; anchored residue of rice and wheat + mungbean residue retention)] increased nutrient use efficiency in term of partial factor productivity of applied NPK in rice crop.

2021 ◽  
pp. 1-18
Author(s):  
Muhammad Farooq ◽  
Naqib Ullah ◽  
Faisal Nadeem ◽  
Ahmad Nawaz ◽  
Kadambot H. M. Siddique

Summary Continuous rotation of rice with wheat in rice–wheat system has resulted in stagnant yields and reduced profit margins while deteriorating the soil health. Legume incorporation in existing rice–wheat rotations might be a viable option to improve soil health and productivity. We investigated the influence of puddled transplanted flooded rice and direct-seeded rice on weed dynamics, soil health, productivity, and profitability of post-rice wheat and chickpea grown under zero tillage and conventional tillage. The previous direct-seeded rice crop was either sown alone or intercropped with sesbania as brown manure. The experiment comprised different rice–wheat and rice–chickpea systems which had been in place for two years: with and without rice residue retention. The initial soil analysis indicated that the plots with sesbania brown manuring in direct-seeded rice had the lowest soil bulk density (17.2%) and highest soil porosity (19.3%). Zero tillage in wheat or chickpea in the plots previously cultivated with co-culture of sesbania and direct-seeded rice increased total soil organic carbon by 13–22% in both years. The plots with sesbania brown manuring in direct-seeded rice followed by zero till or conventional till wheat and the plots with direct-seeded rice followed by zero till wheat with rice residue retention recorded the greater concentrations of total nitrogen, available phosphorus, and exchangeable potassium. Zero tillage in wheat and chickpea in post-rice sesbania brown manuring plots produced 41% and 43% more grain yield than those in the puddled transplanted flooded rice with conventional tillage and had the highest profitability. Overall, the rice–chickpea systems had better soil health and profitability than rice–wheat cropping systems. In conclusion, direct-seeded rice intercropped with sesbania followed by wheat and chickpea under zero tillage suppressed weed flora and improved soil physical properties, nutrient availability, productivity, and profitability.


2015 ◽  
Vol 15 (2) ◽  
pp. 1-10
Author(s):  
G. Sah ◽  
S. C. Shah ◽  
S. K. Sah ◽  
R. B. Thapa ◽  
A. McDonald ◽  
...  

Field experiments were conducted to evaluate conventional tillage (CT), permanent raised bed (PRB), and zero tillage (ZT) with residue retention and removal at three nitrogen levels (0, 100, and 120 kg N ha-1) on wheat productivity, energy input and energy output, energy use efficiency, specific energy, and CO2 emission from 2010 to 2012 under rice-wheat system at Pheta V.D.C, Bara, Nepal. The experiments were carried out in strip split plot designs with three replications. Zero tillage wheat produced significantly higher grain yield (2616.5 kg ha-1), saved 10.4 % energy input, increased energy output (12.4 %), enhancing energy use efficiency by 25.2 % and reducing specific energy by 23.6 %, as compared to conventional tillage. Diesel consumption on crop establishment and irrigations were the lowest for ZT (48.6 liter ha-1) and the highest for CT (86.3 liter ha-1). PRB consumed the lowest quantity of diesel on two irrigations (34.6 liter ha-1) with higher energy use efficiency (3.4 %) and lower specific energy (8.76 MJ kg-1) over CT. The CO2 emission from CT was the highest (224.32 kg ha-1) over ZT (126.4 kg ha-1) and PRB (146.11 kg ha-1). Residue retention increased 4 % grain yield over residue removal. Without nitrogen application, energy output was the lowest (34192 MJ ha-1) with the highest specific energy (12.6 MJ kg-1). Thus, zero-till wheat with 40-cm residue retention and 100 kg N ha-1 application was suggested for mass scale adoption in the Tarai region of Nepal.DOI: http://dx.doi.org/njst.v15i2.12104      Nepal Journal of Science and Technology Vol. 15, No.2 (2014) 1-10


Author(s):  
Suborna Roy Choudhury ◽  
Anupam Das ◽  
S. K. Gupta ◽  
Seema . ◽  
R. P. Sharma ◽  
...  

Greenhouse gas emissions have an indirect impact on crop production and are primary sources of the global warming. A field experiment was carried out to examine the effect of management practice (i.e. culmination of tillage and nutrient management) on GHGs emission and its subsequent effect on agronomic productivity and subsequent impact on global warming. There were three different crop establishment methods as main plot treatments: M1 (Rice: SRI, Wheat: Conventional tillage), M2 (Rice: Transplanted Puddle rice, Wheat: Conventional tillage + 30% residue incorporation), M3 (Rice: DSR, Wheat: Zero tillage + 30% residue retention) and four nutrient management as sub plot treatments viz. S1(100% of Recommended dose of fertilizer (RDF) through inorganic sources), S2 (75% of RDF through inorganic sources + 25% N of RDF through organic sources), S3 (50% of RDF through inorganic sources + 50% N of RDF through organic sources), S4 (S1 + mung bean as green-manure). After conducting three year of experiment (2013-2016), it has been found that the DSR emitted lower CH4 (1.39 mg m-2 hr-1), CO2 (0.57 mg m-2 hr-1) and N2O (0.36 mg m-2 hr-1) at the maximum tillering stage of rice. The same trend was followed under zero tillage with30% residue retention in wheat with lower emission range of all three gases i.e. 0.95, 1.29 and 0.58 mg m-2 hr-1 respectively. Lowest emission of CH4 and CO2 with the values of 1.87 and 1.24 mg m-2 hr-1 respectively from rice and 1.57 and 3.23 mg m-2 hr-1 from wheat was observed under 100% RDF through inorganic fertilization, whereas, N2O emission was just reverse to emission pattern of CH4 and CO2. Crop establishment through minimum soil disturbance with residue retention under rice- wheat cropping sequence along with 100% RDF through mineral fertiliser along with green manure could be one of the stable agronomic strategies under lower GHGs emission scenarios.


2013 ◽  
Vol 3 ◽  
pp. 64-72 ◽  
Author(s):  
G Sah ◽  
SC Shah ◽  
SK Sah ◽  
RB Thapa ◽  
A McDonald ◽  
...  

Rice-wheat system provides food, income, and employment to over 83 % of the people and contributes to national food security in Nepal. Sustainability of the system is under threat because of increasing cultivation cost and declining soil fertility. On-farm experiments were carried out to determine the effects of tillage and crop establishment methods, crop residue management, and nitrogen levels that affect soil attributes and productivity of the rice-wheat system during 2010- 2011at Bara, Nepal. The treatment consisted of three tillage and crop establishment methods viz. Conventional tillage (CT), Permanent bed planting (PB), and Zero-tillage (ZT); two residue management levels viz. Residue retention and Residue removal; and three nitrogen levels viz. Zero nitrogen, farmer’s dose (80 and 100 kgha-1 N for rice and wheat, respectively), and abundant nitrogen (120 kgha-1 N for both rice and wheat crop). The experiments were laid out in strip-split plot design with three replications. The research results revealed that rice grain yield was significantly higher in the plots receiving N level as applied by farmers that was similar to abundant nitrogen dose. Wheat grain yield was significantly higher with zero tillage compared to permanent bed planting and conventional tillage. Significantly higher wheat grain yield was also obtained due to abundant nitrogen dose than zero dose nitrogen which was similar to farmers’ dose of N as well. There was no significant difference in grain yield of rice and wheat due to residue retention, although, it improved soil moisture. In wheat crop, zero-till planting and increased nitrogen application conserved soil moisture, enhanced soil electrical conductivity and lowered soil temperature. It can be concluded that rice and wheat can be grown successfully with zero tillage and farmer’s nitrogen dose without any yield penalty. Agronomy Journal of Nepal (Agron JN) Vol. 3. 2013, Page 64-72 DOI: http://dx.doi.org/10.3126/ajn.v3i0.9007


2019 ◽  
Vol 17 (1) ◽  
pp. 49-63
Author(s):  
K Pariyar ◽  
A Chaudhary ◽  
P Sapkota ◽  
S Sharma ◽  
CB Rana ◽  
...  

The effects of two tillage methods (zero tillage and conventional tillage), two residue managements (residue kept and residue removed) and two levels of cropping system (maize + soybean and sole maize) were studied over 3 years (2015-2017) at Dailekh district of Nepal. Arun-2 and Puja were the varieties of maize and soybean used respectively, followed by winter wheat. The results revealed that the maize + soybean system had significantly higher plant population and ear population (34.83 thousands ha-1 and 34.35 thousands ha-1, respectively), grains per row (37.1), ear length (16.6 cm) and 20.5% higher grain yield as compared to sole maize. The highest maize equivalent yield (7.92 t ha-1) was recorded in maize + soybean as compared to the lower grain yield equivalent (7.06 t ha-1) in sole maize. Zero tillage accounted relatively higher benefits (high net income and B:C ratio) as compared to conventional tillage. The residue kept plot resulted significantly higher B:C ratio (2.41) than the residue removed (2.11) and the maize + soybean recorded 82.5% greater B:C ratio compared to sole maize. Net annual income was significantly higher in zero tillage, residue kept and maize + soybean system (NRs. 223072.00, 222958.00 and 269016.00 ha-1 respectively). Such combinations are recommended for Dailekh district of Nepal to have profitable crop productivity. SAARC J. Agri., 17(1): 49-63 (2019)


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
MOHAMMAD\ HASHIM ◽  
◽  
V K SINGH ◽  
K K SINGH ◽  
SHIVA DHAR ◽  
...  

A field experiment was conducted during kharif season of 2015 and 2016 at research farmof the ICAR- Indian Agricultural Research Institute Regional Station Pusa, Samastipur, Biharto determine the foliar feeding of micronutrients (iron and zinc at different growth stages)on growth, yield and economics of rice in middle Gangetic plains of Bihar. The experimentwas laid out in randomized block design consisting of 9 treatments with 3 replications. Thetreatments consist of 0.5% spray of Zinc Sulphate and 1% spray of Ferrous Sulphate at fourdifferent growth stages i.e. 40, 50, 60 and 70 days aĞer transplanting (DAT) and one con-trol. The results shown significant increasing trends of growth, yield aĴributes and yield ofrice with four sprays of 1.0% solution of FeSO4at 40, 50, 60 and 70 days and three sprays ofZnSO4at 50, 60 and 70 days recorded significantly higher plant height, effective tillers/m2,panicle length, grains/panicle, 1,000-grain weight, biological yield, grain yield and straw yieldat maturity. These treatments also gave significantly higher net returns and benefit: cost ratioover the control.


Author(s):  
Hossain M ◽  
◽  
Begum M ◽  
Rahman M ◽  
Hashem A ◽  
...  

A two year longer on-farm research on conservation agriculture was conducted at Bhangnamari area of Bangladesh during November-June in 2014-15 and 2015-16 to evaluate the performance of non-puddled rice cultivation under increased crop residue retention. The rice variety BRRI dhan28 was transplanted under puddled conventional tillage (CT) vs. non-puddled strip tillage (ST) with 50% standing residue (R50) vs. conventional no-residue (R0) practice. The treatments were arranged in a randomized complete block design with four replications. There were no significant yield differences between tillage practices and residue levels in 2014-15. But in the following year, ST yielded 9% more grain compared to CT leading to 22% higher BCR. Retention of 50% residue increased yield by 3% over no-residue, which contributed to 10% higher benefit-cost ratio (BCR). Results of this two year on-farm study confirmed that the ST combined with 50% residue retention yielded the highest grain yield (5.81 t ha-1) which contributed to produce the highest BCR (1.06).


2018 ◽  
Vol 6 (2) ◽  
pp. 164-168 ◽  
Author(s):  
Bibek Thapa ◽  
Keshab Raj Pande ◽  
Baburam Khanal ◽  
Santosh Marahatta

A field experiment was conducted to evaluate the effect of tillage practices, residue management and cropping system on soil properties at NMRP, Rampur, Chitwan from November 2015 to April 2016. The experiment was laid on Strip split design with combination of 12 different treatments i.e, zero tillage & conventional tillage as main plot in the strip, residue retention & residue removal as sub-plot factor and maize – wheat, maize + soybean – wheat & soybean – wheat cropping system as sub-sub plot factor. Three replications of the treatments were made. Soil sample before experiment and after harvest of wheat was taken (0-15cm). The experiment showed significant effect of zero tillage on organic carbon (2.169%) and on total soil nitrogen (0.112 %). Zero tillage with retention of residues is valuable tool for the conservation agriculture and helps in sustainability of soil however long-term research for the tillage management and residue retention should be conducted to highlight the major effects on change in properties of soil.Int. J. Appl. Sci. Biotechnol. Vol 6(2): 164-168 


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 159
Author(s):  
Rina Rani Saha ◽  
Md. Abul Khayer Mian ◽  
Subarna Kundu ◽  
Khokan Kumer Sarker

The experiment was carried out under ACIAR-KGF project at farmers’ field of Tildanga village at Dacope Upazilla under Khulna District during rabi season of 2018–19 after harvest of previous transplanted aman rice to find out the suitable variety of garlic (Allium sativum) for cultivation in southern coastal region of Bangladesh and to observe the effect of straw mulching on the yield of garlic. The experimental area faces slight to moderately drought and saline prone at later part of winter season and beginning of summer. The salinity causes unfavorable environment and hydrological situation restricting the normal crop production. Farmers generally cultivate only single transplanted aman (T.aman) rice in a year at south and south-western coastal saline areas. Garlic is one of the important spices crop in Bangladesh. The treatments of the experiment were five garlic varieties viz., V1 = BARI Roshun-1, V2 = BARI Roshun-2, V3 = BARI Roshun-3, V4 = BARI Roshun-4 which were developed by Bangladesh Agricultural Research Institute (BARI) and V5 = Local cultivar. The experiment was laid out in a randomized complete block design with three replications. All five varieties of garlic were sown on 17 December 2018 under zero tillage condition. BARI Roshun-1 gave the highest number of bulb/m2 (57), pseudostem height (37 cm), weight of individual bulb (7.65 g) and bulb yield (5.81 t/ha). BARI Roshun-3 gave the lowest yield (3.87 t/ha). It was also observed that the soil moisture of the farmers’ field were higher during sowing of garlic which was not suitable for ploughing the land. So timely establishment of garlic is possible by following hand dibbling methods under zero tillage condition on the muddy soil surface and also cost effective. Mulching can protect the evaporation loss and reduces the salinity stress which ultimately influence the crop establishment and yield. Earlier farmers of Tildanga at Dacope under Khulna District had no idea about the cultivation of garlic under zero tillage along with straw much. When the experimental results were demonstrated and discussed about the technology to the farmers gathering during Field Day then they were impressed and interested to grow garlic. Fallow land of coastal areas of Bangladesh could be utilized through disseminating this technology and ultimately cropping intensification increased.


Helia ◽  
2019 ◽  
Vol 42 (70) ◽  
pp. 111-125
Author(s):  
E. Akpojotor ◽  
V.I.O. Olowe ◽  
C. Adejuyigbe ◽  
S.O. Adigbo

AbstractTwo field trials were conducted on the Research Farm of the Institute of Food Security, Environmental Resources and Agricultural Research, Nigeria during the late cropping seasons (Jun.–Nov.) of 2014 and 2015 to evaluate the agronomic performance of four recently released sunflower varieties (SAMSUN-1, SMASUN-2, SAMSUN-3 and SAMSUN-4) to three fertilizer regimes: Control, Split application of 30 kg N + 28 kg P2O5 at 21 days after sowing (DAS) and at anthesis and Single application of 60 kg N and 56 kg P2O5 at 21DAS. The experiment was laid out in a randomized complete block design using a 3 × 4 factorial arrangement and replicated three times. Data were collected on phenology, plant height, seed yield and yield attributes, and quality. The varietal effect was only significant in 2015 for head weight, a number of achene per head and 100 achene weight. Application of N and P fertilizer either as split or single significantly (P ≤ 0.05; F-test) enhanced plant height at R5 and R9, 100 achene weight, achene weight per head and grain yield in both years. Single application resulted in significantly (P ≤ 0.05) higher grain yield in 2014 than the split and control and was on par with a split. Significant variety × fertilizer regime was recorded for protein content in 2014 and 2015, and oil content in 2015. Therefore, a single application of N and P fertilizers at 21 WAS is recommended for adoption in the humid tropics to enhance seed and oil production of SAMSUN-3 and SAMSUN-4.


Sign in / Sign up

Export Citation Format

Share Document