scholarly journals Shoreline Change and its Impact on Land use Pattern and Vice Versa – A Critical Analysis in and Around Digha Area between 2000 and 2018 using Geospatial Techniques

2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Anindita Nath ◽  
Bappaditya Koley ◽  
Subhajit Saraswati ◽  
Basudeb Bhatta ◽  
Bidhan Chandra Ray

The shoreline is a very unpredictable, uncertain, and forever changing landscape for any coastal process. Due to erosional and accretional activities, the shoreline has continuously fluctuated with the continual process of waves and tides. Shore boundaries are determined by the shoreline at its furthest towards the sea (low tide) and extreme towards land (high tide). The present research aimed to identify the temporal alterations of shoreline and changes in land-cover between the areas of Rasulpur to Subarnarekha estuary, east coast of India with 70.04 km length of shoreline. An area amounting to 143sq.km had been selected for showing the land-cover changing and this area had witnessed the rapid growth of population and increasing industrial activities causing an unsurpassable impact on the environment. The present study used three multi dated imageries for land use/ land cover (LULC) map and seven multi-resolution satellite images were applied to estimate the long-term shoreline change rate by dividing the coastal area into three “littoral zones” (LZ). The Digital shoreline analysis system (DSAS) was applied to identify the shoreline change rate of the year 2000 to 2018. Several statistical methods, linear regression rate (LRR), net shoreline movement (NSM), End Point Rate (EPR) were used to find out the erosion and accretion rate. The result showed that maximum erosion had been found in LZ III, rate of -2.22 m/year. Maximum accretion had been identified in LZ I, at the rate of 35.5 m/year. The LULC showed that maximum vegetation area had been decreased in the year of 2010 (14.21sq.km) but 38.96sq.km vegetation area had increased in 2018. The prominent increase had been identified in built up and shallow water. Built up had been expanded from 25.59sq.km (2000) to 41.26sq.km (2018). Shallow water was increased from 5.53sq.km (2000) to 18.90sq.km (2018). Sand and soil showed a decreasing pattern from 2000 – 2018. The outcome acquired from the present study will play a significant role to estimate the shoreline migration rate and will be helpful for sustainable land use management. The shoreline change rate will be also useful for coastal planners to adopt mitigation measures.

Author(s):  
Soni Prasoon ◽  
Singh Pushpraj

Remote Sensing and GIS is a very good modality for retrospection and the strategy for better exploitation of sustainable land use system. The present study was conducted in the Bilaspur district for analyzing the spatial distribution of Land Use Change. During last decades the increasing population of Bilaspur city, affect the land use pattern of Mopka Village. The anthropogenic activities were affecting the agricultural land along with barren land. For the development of civic amenities the land of the above village was used. The main objective of the present study is to analyses the land use/land cover distribution in Mopka village, Bilaspur district in between last 12 years and to identify the main forces behind the changes. The objectives of present studies are, to create a land use land cover maps of Mopka village using satellite imagery. To analysis the temporal changes of village area in between the year 2000 and 2012, the primary, secondary and satellite data were used. The results of the present study show that the decadeial changes due to population growth and increasing demand of infrastructure were destroying the natural resources, natural habitat and soil structure of area.Int. J. Agril. Res. Innov. & Tech. 5 (1): 1-9, June, 2015


2021 ◽  
Vol 10 (5) ◽  
pp. 272
Author(s):  
Auwalu Faisal Koko ◽  
Wu Yue ◽  
Ghali Abdullahi Abubakar ◽  
Akram Ahmed Noman Alabsi ◽  
Roknisadeh Hamed

Rapid urbanization in cities and urban centers has recently contributed to notable land use/land cover (LULC) changes, affecting both the climate and environment. Therefore, this study seeks to analyze changes in LULC and its spatiotemporal influence on the surface urban heat islands (UHI) in Abuja metropolis, Nigeria. To achieve this, we employed Multi-temporal Landsat data to monitor the study area’s LULC pattern and land surface temperature (LST) over the last 29 years. The study then analyzed the relationship between LULC, LST, and other vital spectral indices comprising NDVI and NDBI using correlation analysis. The results revealed a significant urban expansion with the transformation of 358.3 sq. km of natural surface into built-up areas. It further showed a considerable increase in the mean LST of Abuja metropolis from 30.65 °C in 1990 to 32.69 °C in 2019, with a notable increase of 2.53 °C between 2009 and 2019. The results also indicated an inverse relationship between LST and NDVI and a positive connection between LST and NDBI. This implies that urban expansion and vegetation decrease influences the development of surface UHI through increased LST. Therefore, the study’s findings will significantly help urban-planners and decision-makers implement sustainable land-use strategies and management for the city.


2020 ◽  
Vol 12 (6) ◽  
pp. 2238 ◽  
Author(s):  
Enric Tello ◽  
Joan Marull ◽  
Roc Padró ◽  
Claudio Cattaneo ◽  
Francesc Coll

Could past land uses, and the land cover changes carried out, affect the current landscape capacity to maintain biodiversity? If so, knowledge of historical landscapes and their socio-ecological transitions would be useful for sustainable land use planning. We constructed a GIS dataset in 10 × 10 km UTM cells of the province of Barcelona (Catalonia, Spain) for 1956 and 2009 with the changing levels of farming disturbance exerted through the human appropriation of photosynthetic net primary production (HANPP), and a set of landscape ecology metrics to assess the impacts of the corresponding land-use changes. Then, we correlated them with the spatial distribution of total species richness (including vascular plants, amphibians, reptiles, birds and mammals). The results allow us to characterize the main trends in changing landscape patterns and processes, and explore whether a land-use legacy of many complex agroforest mosaics maintained by the intermediate farming disturbance managed in 1956 could still exist, despite the decrease or disappearance of those mosaics before 2009 due to the combined impacts of agroindustrial intensification (meaning higher HANPP levels), forest transition (meaning lower HANPP levels) and urban sprawl. Statistical analysis reveals a positive impact of the number of larger, less disturbed forest patches, where many protected natural sites have been created in 1956–2009. However, it also confirms that this result has not only been driven by conservation policies and that the distribution of species richness is currently correlated with the maintenance of intermediate levels of HANPP. This suggests that both land-sharing and land-sparing approaches to biodiversity conservation may have played a synergistic role owing to the legacy of complex land cover mosaics of former agricultural landscapes that are now under a serious threat.


2020 ◽  
Vol 8 (6) ◽  
pp. 2409-2413

Land Degradation is a complex field of study because it’s characterized by participation of climatic, ecological, geographical, and social fields of study. It pointed at long-term decline of natural productiveness of land from the processes of climatic variations and unsustainable man-environment relationship. It’s therefore vital to monitor this phenomenon to inform decision making in providing mitigation measures to ensure sustainable land use. It’s in that regard, that this paper aim to assess the implementation of SDG target 15.3, to determine the extent of degraded area in Gombe State for the period of 2001-2015. The research was conducted in Trends.Earth tool where ESA-CCI land cover, AVHRR/MODIS, and soil grid datasets were used for separate change detection analysis of land cover, land productivity and soil organic carbon Stock respectively. The information from the three sub-indicators were combined and derived the degraded land area. The result appears that the extent of degraded land occupied 12,248.8 sq.km traced to about 68.3% of the state land area. Areas with stable condition account for 4,180.4 sq.km equivalent to 23.3% of the state area. The extent of land areas with improved conditions covered 780.9 sq.km represent 4.4% of the state land area and water body covered 718.7 sq.km with 4%. The paper recommend nature-based solutions to reverse and restore part of the degraded land for better ecosystem services.


Author(s):  
Stanley Atonya ◽  
Luke OLANG ◽  
Lewis Morara

A comprehensive undertanding of land-use/cover(LUC) change processes, their trends and future trajectories is essential for the development of sustainable land-use management plans. While contemporay tools can today be employed to monitor historical land-cover changes, prediction of future change trajectories in most rural agro-ecological landscapes remains a challenge. This study evaluated potential LUC changes in the transboundary Sio-Malaba-Malakisi River Basin of Kenya and Uganda for the period 2017-2047. The land use change drivers were obtained through a rigorous fieldwork procedure and the Logistic Regression Model (LGM) to establish key factors for the simulation. The CLUE-S model was subsequently adapted to explore future LUC change trajectories under different scenarios. The model was validated using historical land cover maps for the period of 2008 and 2017, producing overall accuracy result of 85.7% and a Kappa coefficient of 0.78. The spatial distribution of vegetation cover types could be explained partially by proximate factors like soil cation exchange capacity, soil organic carbon and soil pH. On the other hand, built-up areas were mainly influenced by population density. Under the afforestation scenario, areas under forest cover expanded further occupying 54.7% of the basin. Conversely, under the intense agriculture scenario, cropland and pasture cover types occupied 78% of the basin. However, in a scenario where natural forest and wetlands were protected, cropland and pasture only expanded by 74%. The study successfully outlined proximate land cover change drivers, including potential future changes and could be used to support the development of sustainable long-term transboundary land-use plans and policy.


2020 ◽  
Vol 66 (2) ◽  
pp. 126-135
Author(s):  
Kh. Pradipkumar Singh ◽  
◽  
Priyalina Sapam ◽  

The river regime is one of the important parameters in studying the physical attributes in a region. The influence of a river passing in a region is immense. The nature of the stream reflects the natural and cultural set up of the surrounding areas. For instance soil factors, Land use/Land cover and vegetation, habitat, settlements, etc. Everywhere land use/ land cover is often altered during the process of economic and social development and eventually, the morphology and structure of river systems are unconsciously or consciously influenced along with the land-use change. The changes in land use/ land cover have a large amount of impact on the nature of runoff and associated hydrological characteristics. Availability of remotely sensed data has made convenient and accurate to map and monitor the Spatio-temporal variation of land use/ land cover at regional or local scales. The present paper highlights the changing of land use pattern in the Imphal River catchment. To identify the changes, Landsat 5 TM and Landsat 7 ETM+ obtained in 2005 and 2016 have been used and categorize the images into 16 major land use/ land cover. It has been found that over the periods both rural and urban built-up area has increased more than 24 Km2 and decreased in forests cover area by more than 113 Km2 . Further, the study also focused on the rainfallrunoff response through regression analysis. The integration of the analyses demonstrates the effect of land use/ land cover change on discharge characteristics of the study area.


2018 ◽  
Vol 15 ◽  
pp. 45-56 ◽  
Author(s):  
Him Lal Shrestha ◽  
Mahesh Poudel

Landslide hazard zonation map is prepared to assist planners to implement mitigation measures so that further damage and loss can be minimized. In this study, post 25 April 2015 earthquake remote sensing data were used to prepare landslide inventory. Landsat images after the earthquake were downloaded from the National Aeronautics and Space Administration (NASA) website and processed using ArcGIS, ERDAS imagine and Analytical Hierarchy Process (AHP) as an extension in ArcGIS. The study was carried out in Gorkha district as this was the epicenter of the main earthquake of 25 April 2015 and consequently was highly affected by earthquake triggered landslide. The digital imagery was processed to analyze land use/land cover type. Geological features were analyzed using the criteria like color, tone, topography, stream drainage, etc. Primary topographic features like slope, aspect, elevation, etc. were generated from Digital Elevation Model (DEM). Seismological data (magnitude and epicenter) were obtained from Department of Seismology. For Landslide Susceptibility Zonation (LSZ) different thematic maps like Land Use and Land Cover (LULC) map, slope map, aspect map, lithological map, buffer map (distance from road and river/water source), soil map, and seismological map were assigned relative weights on the ordinal scale to obtain Landslide Susceptibility Index (LSI). Threshold values were selected according to breaks in LSI frequency and a LSZ map was prepared which shows very low, low, moderate, high, very high hazard zones in Gorkha district.


2020 ◽  
Author(s):  
Weihong Wang

<p>Utah Lake is one of the largest natural freshwater lakes in the western United States. Its watershed is 9,800 km<sup>2</sup>. Utah Lake is located in Utah County which is expected to have the highest population growth in the state through 2060. Land use and water regulation has shifted the Utah Lake shoreline since the 1900s. Monitoring the land use and land cover change (LULCC) in the watershed is critical to understanding surrounding hydrology and future sustainability. In this study, we compared the Utah Lake shoreline change from 1953-2014 and classified the land cover in the Utah Lake watershed from 1985-2018. Our results show that there was a 41.45 km<sup>2  </sup>decrease in lake surface from 1953 to 2014. The shoreline around the Provo Bay and Goshen Bay has receded lake-ward considerably in 2014 compared to the 1953 shoreline, and the lost water and wetland area was equivalent to 3,851 football fields in size. Land cover change calculations indicate that from 1985 to 2018 urbanization increased by 6%, forest by 2%, and barren by 3%, whereas water and agriculture decreased by 1% and 6%, respectively. The findings from this project could be used by Utah’s legislature to implement meaningful watershed planning and management, especially in light of the state considering House Bill 272 that promotes “comprehensive restoration of Utah Lake by building an island on it.” The bill proposes an island in Utah Lake which could dramatically alter LULCC around the lake. In addition, any significant LULCC on and around the lake will modify the lake water budget, its ecosystem, and have profound consequences on Utah Lake watershed and the surrounding regions.</p>


Sign in / Sign up

Export Citation Format

Share Document