scholarly journals Thermal Comfort Performance of Naturally Ventilated Royal Malaysian Police (RMP) Lockup in Hot and Humid Climate of Malaysia

2021 ◽  
Vol 29 (3) ◽  
Author(s):  
Bismiazan Abd. Razak ◽  
Mohd. Farid Mohamed ◽  
Wardah Fatimah Mohammad Yusoff ◽  
Mohd. Khairul Azhar Mat Sulaiman

Thermal comfort performance of three vacant naturally ventilated Royal Malaysia Police (RMP) case study lockups (LK1 in Penang, LK2 in Melaka & LK3 in Kuala Lumpur) was measured during monsoon change period from Northeast Monsoon to Southeast Monsoon. According to NGO’s report and previous studies, the lockups condition is very poor and hot which contribute to discomfort among detainees. The objectives of the study are to investigate thermal comfort performance of the lockups based on four environmental parameters (Ta, Tr, Va, & RH) through physical measurement, to predict thermal comfort performance based on operative temperature (To) and neutral operative temperature (Tneutop), and to compare the results with thermal comfort criteria recommended by ASHRAE 55 standard and previous thermal comfort studies in hot and humid climate. The results show that To and Tneutop reading of LK1 is exceeding the maximum range recommended by ASHRAE 55 and previous studies by 2% to 8% (To) and 1% (Tneutop) which categorizing LK1 condition as hot. This is mostly due to high hot airflow brought through an ineffective window opening. The results will be used as reference for improvement towards some aspects such as window opening, building finishes materials, space volume and building orientation in future lockup design.

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4530
Author(s):  
Youcef Bouzidi ◽  
Zoubayre El Akili ◽  
Antoine Gademer ◽  
Nacef Tazi ◽  
Adil Chahboun

This paper investigates adaptive thermal comfort during summer in medical residences that are located in the French city of Troyes and managed by the Association of Parents of Disabled Children (APEI). Thermal comfort in these buildings is evaluated using subjective measurements and objective physical parameters. The thermal sensations of respondents were determined by questionnaires, while thermal comfort was estimated using the predicted mean vote (PMV) model. Indoor environmental parameters (relative humidity, mean radiant temperature, air temperature, and air velocity) were measured using a thermal environment sensor during the summer period in July and August 2018. A good correlation was found between operative temperature, mean radiant temperature, and PMV. The neutral temperature was determined by linear regression analysis of the operative temperature and Fanger’s PMV model. The obtained neutral temperature is 23.7 °C. Based on the datasets and questionnaires, the adaptive coefficient α representing patients’ capacity to adapt to heat was found to be 1.261. A strong correlation was also observed between the sequential thermal index n(t) and the adaptive temperature. Finally, a new empirical model of adaptive temperature was developed using the data collected from a longitudinal survey in four residential buildings of APEI in summer, and the obtained adaptive temperature is 25.0 °C with upper and lower limits of 24.7 °C and 25.4 °C.


2012 ◽  
Vol 48 ◽  
pp. 7-14 ◽  
Author(s):  
Nastaran Makaremi ◽  
Elias Salleh ◽  
Mohammad Zaky Jaafar ◽  
AmirHosein GhaffarianHoseini

2014 ◽  
Vol 20 (7) ◽  
pp. 731-737 ◽  
Author(s):  
Fu-Jen Wang ◽  
Meng-Chieh Lee ◽  
Tong-Bou Chang ◽  
Yong-Sheng Chen ◽  
Ron-Chin Jung

2019 ◽  
Vol 203 ◽  
pp. 109448 ◽  
Author(s):  
Kuniaki Mihara ◽  
Chandra Sekhar ◽  
Yuichi Takemasa ◽  
Bertrand Lasternas ◽  
Kwok Wai Tham

2018 ◽  
Vol 149 ◽  
pp. 02051 ◽  
Author(s):  
Khalid El Harrouni ◽  
Mouhcine Ben Aicha ◽  
Rime El Harrouni

The traditional courtyard house of the Mediterranean Basin has been viewed as a complex regulating system that creates a microclimate which historically worked, and still works, in a passive way to provide acceptable thermal comfort in summer. The internal courtyard is generally described as a positive factor that can moderate extreme outdoor climatic conditions. However, some researches have shown that the courtyard could become a negative factor from the energy efficiency point of view. For this purpose, this paper is based on a research study exploring sustainable characteristics of Moroccan traditional housing and its climatic adaptation, delving into the Rabat-Salé case study. A traditional courtyard model is used as a case study to analyze the indoor thermal comfort without using mechanical heating and cooling systems. The thermal behavior of the rooms surrounding the courtyard is analyzed under a temperate and humid climate of Rabat-Salé medina. The simulation modelling is carried out to analyze the effectiveness of different parameters to improve the indoor climate during summer and winter, including the façade orientation, the air infiltration, the surroundings, the ceiling height, the walls and roof/ceiling insulation and the shading devices. Tools for climatic design, Mahoney’s tables, Givoni and Szokolay bio climatic diagrams have been also used to improve design strategies in terms of thermal comfort.


Sign in / Sign up

Export Citation Format

Share Document