scholarly journals Earth’s Stratospheric Aerosol Parameters Reconstruction from Polarimetric Measurements of the Sky

2021 ◽  
pp. 528-534
Author(s):  
Petro Nevodovskyi ◽  
Oleksandr Ovsak ◽  
Anatoliy Vidmachenko ◽  
Оrest Ivakhiv ◽  
Oleksandr Zbrutskyi ◽  
...  

Earth’s climate changes are the result of natural changes in the energy balance of Sun irradiation and influence of anthropogenic factors on the variations of ozone layer thickness and stratospheric aerosol abundance. It is developed a miniature polarimeter for satellite polarimetric experiments in the ultraviolet region of the sunlight spectrum. The main task of this device is to the obtain an information on the stratospheric aerosol physical properties. We tested this polarimeter on a bench specially designed and manufactured as well. It is possible to measure by it the phase dependences of the degree of linear polarization (DLP) of solar radiation scattered by the Earth’s atmosphere. A set of special computer programs was developed for comparing the spectral polarimetric measurements DLP data of cloudless sky with model calculations of DLP for the artificial gas-aerosol medium. Thus, the prototype of satellite polarimeter as well as special computer programs make it possible to study the Earth’s atmosphere aerosol physical characteristics.

2014 ◽  
Vol 7 (3) ◽  
pp. 777-780 ◽  
Author(s):  
L. A. Rieger ◽  
A. E. Bourassa ◽  
D. A. Degenstein

Abstract. On 15 February 2013 an 11 000 ton meteor entered Earth's atmosphere southeast of Chelyabinsk, creating a large fireball at 23 km altitude. The resulting stratospheric aerosol loading was detected by the Ozone Mapping and Profiler Suite (OMPS) in a high-altitude polar belt. This work confirms the presence and lifetime of the stratospheric debris using the Optical Spectrograph and InfraRed Imaging System (OSIRIS) onboard the Odin satellite. Although OSIRIS coverage begins in mid-March, the measurements show a belt of enhanced scattering near 35 km altitude between 50° N and 70° N. Initially, enhancements show increased scattering of up to 15% over the background conditions, decaying in intensity and dropping in altitude until they are indistinguishable from background conditions by mid-May. An inversion is also attempted using the standard OSIRIS processing algorithm to determine the extinction in the meteoric debris.


2013 ◽  
Vol 13 (8) ◽  
pp. 3945-3977 ◽  
Author(s):  
I. Ermolli ◽  
K. Matthes ◽  
T. Dudok de Wit ◽  
N. A. Krivova ◽  
K. Tourpali ◽  
...  

Abstract. The lack of long and reliable time series of solar spectral irradiance (SSI) measurements makes an accurate quantification of solar contributions to recent climate change difficult. Whereas earlier SSI observations and models provided a qualitatively consistent picture of the SSI variability, recent measurements by the SORCE (SOlar Radiation and Climate Experiment) satellite suggest a significantly stronger variability in the ultraviolet (UV) spectral range and changes in the visible and near-infrared (NIR) bands in anti-phase with the solar cycle. A number of recent chemistry-climate model (CCM) simulations have shown that this might have significant implications on the Earth's atmosphere. Motivated by these results, we summarize here our current knowledge of SSI variability and its impact on Earth's climate. We present a detailed overview of existing SSI measurements and provide thorough comparison of models available to date. SSI changes influence the Earth's atmosphere, both directly, through changes in shortwave (SW) heating and therefore, temperature and ozone distributions in the stratosphere, and indirectly, through dynamical feedbacks. We investigate these direct and indirect effects using several state-of-the art CCM simulations forced with measured and modelled SSI changes. A unique asset of this study is the use of a common comprehensive approach for an issue that is usually addressed separately by different communities. We show that the SORCE measurements are difficult to reconcile with earlier observations and with SSI models. Of the five SSI models discussed here, specifically NRLSSI (Naval Research Laboratory Solar Spectral Irradiance), SATIRE-S (Spectral And Total Irradiance REconstructions for the Satellite era), COSI (COde for Solar Irradiance), SRPM (Solar Radiation Physical Modelling), and OAR (Osservatorio Astronomico di Roma), only one shows a behaviour of the UV and visible irradiance qualitatively resembling that of the recent SORCE measurements. However, the integral of the SSI computed with this model over the entire spectral range does not reproduce the measured cyclical changes of the total solar irradiance, which is an essential requisite for realistic evaluations of solar effects on the Earth's climate in CCMs. We show that within the range provided by the recent SSI observations and semi-empirical models discussed here, the NRLSSI model and SORCE observations represent the lower and upper limits in the magnitude of the SSI solar cycle variation. The results of the CCM simulations, forced with the SSI solar cycle variations estimated from the NRLSSI model and from SORCE measurements, show that the direct solar response in the stratosphere is larger for the SORCE than for the NRLSSI data. Correspondingly, larger UV forcing also leads to a larger surface response. Finally, we discuss the reliability of the available data and we propose additional coordinated work, first to build composite SSI data sets out of scattered observations and to refine current SSI models, and second, to run coordinated CCM experiments.


2021 ◽  
pp. 196-227
Author(s):  
Eelco J. Rohling

This chapter considers solar radiation management, also known as solar geoengineering, which seeks to manipulate Earth’s climate energy balance by reducing the absorption of incoming solar energy. As the chapter explains, this approach spans a class of proposed measures that has been polarizing the community, with some advocating it as an essential means of keeping global warming within acceptable limits, while others see only grave drawbacks and dangers. The chapter describes the two approaches to limiting the absorption of solar energy: measures taken in space, between Earth and the Sun, to reflect or disperse solar radiation before it even hits Earth’s atmosphere; and measures taken in Earth’s atmosphere or at the Earth’s surface to reflect incoming solar radiation. It goes on to discuss the various proposed methods, their potential, and their drawbacks.


2015 ◽  
Vol 7 (1) ◽  
pp. 28-32
Author(s):  
Dhoom Singh Mehta ◽  
Preetham Pulluri ◽  
Sowmya Nagur Karibasappa

Abstract The environment in which we are surrounded is the sum total of living organisms like animals, plants and microorganisms and their actions which undergo constant changes, especially by human activity. It provides conditions for development and growth and also that of danger and damage. Aerosols are such products seen in the urban ecosystems in various forms. The presence of aerosols in earth's atmosphere can influence earth's climate, as well as human health. As they are omnipresent they form a universal challenge to all the dentists around the world to control their transmission and inhibit their action. Hence, in this article we have reviewed various properties of aerosols, methods of measurements, mode of transmission and standard precautions to be followed. How to cite this article Pulluri P, Karibasappa SN, Mehta DS, Aerosol and Splatter in Dentistry - An overview CODS J Dent 2015;7:28-32.


2013 ◽  
Vol 6 (5) ◽  
pp. 8435-8443 ◽  
Author(s):  
L. A. Rieger ◽  
A. E. Bourassa ◽  
D. A. Degenstein

Abstract. On 15 February 2013 an 11 000 ton meteor entered Earth's atmosphere south east of Chelyabinsk creating a large fireball at 23 km altitude. The resulting stratospheric aerosol loading was detected by the Ozone Mapping and Profiler Suite (OMPS) in a high altitude polar belt. This work confirms the presence and lifetime of the stratospheric debris using the Optical Spectrograph and InfraRed Imaging System (OSIRIS) onboard the Odin satellite. Although OSIRIS coverage begins in mid-March, the measurements show a belt of enhanced scattering near 35 km altitude between 50° N and 70° N. Initially, enhancements show increased scattering of up to 15% over the background conditions, decaying in intensity and dropping in altitude until they are indistinguishable from background conditions by mid-May.


Sign in / Sign up

Export Citation Format

Share Document