Balancing Fisheries Management and Water Uses for Impounded River Systems

<em>Abstract</em>.—The Murray-Darling basin produces about 40% of the total value of Australia’s agricultural output from 1.9 million ha of irrigated agriculture that represents around 75% of the nation’s total irrigation. Major reservoirs in the southeastern states regulate the basin’s river systems for irrigation but also provide recreational fisheries. One of these storages is Lake Eppalock in the state of Victoria, a multi-use impoundment built in 1964 covering 3,230 ha and holding 312,000 ML at full supply level. It has been actively developed as a mixed species recreational fishery (golden perch <em>Macquaria ambigua </em>and Murray cod <em>Maccullochella peeli</em>) and is a popular angling water. The principal recreational target species in the lake compete with invasive pest species (common carp [also known as European carp] <em>Cyprinus carpio</em>). Drought is part of the natural variability of the Australian climate and its rainfall history features several periods of a decade or longer that have been distinctly drought-prone. Eastern Australia was in the eighth year of the latest drought cycle in 2007, and Lake Eppalock had fallen to less than 1% of its full supply level. These conditions highlighted increasing competition for water and brought into focus the interdependence and linkages between fisheries management and water needs, both for irrigation and for the environment. Fisheries managers faced a very strong likelihood of extensive fish deaths in the lake and elsewhere that could cause significant long-term impacts requiring many years to recover the recreational fishery. A planned partnership approach with the storage water authority was adopted in 2006 for integrated fisheries and water management, with response actions targeted to achieve storage conditions ensuring the maximum survivability of key recreational angling species in the lake through the drought. The framework for cooperation established in this study provides an example for future water allocation disputes.

2020 ◽  
Vol 71 (4) ◽  
pp. 257-272
Author(s):  
Onat Başbay ◽  
Mudar Salimeh ◽  
Eddie John

We review the continuing and extensive spread of Papilio demoleus in south-eastern Turkey and in regions of Turkey and Syria adjacent to the north-eastern Mediterranean. Since the authors documented the arrival of this attractive but potentially destructive papilionid species at coastal areas of Syria in 2019, regular monitoring has confirmed successful overwintering there, as well as in Turkey. As previously indicated, P. demoleus is widely recognized as an invasive pest species in Citrus-growing areas of the world and hence its arrival is of potential economic importance to a region in which citrus is widely grown.


2019 ◽  
Author(s):  
Camiel Doorenweerd ◽  
Michael San Jose ◽  
Norman Barr ◽  
Luc Leblanc ◽  
Daniel Rubinoff

AbstractDistance decay principles predict that species with larger geographic ranges would have greater intraspecific genetic diversity than more restricted species. However, invasive pest species may not follow this prediction, with confounding implications for tracking phenomena including original ranges, invasion pathways and source populations. We sequenced an 815 base-pair section of the COI gene for 441 specimens of Bactrocera correcta, 214 B. zonata and 372 Zeugodacus cucurbitae; three invasive pest fruit fly species with overlapping hostplants. For each species, we explored how many individuals would need to be included in a study to sample the majority of their haplotype diversity. We also tested for phylogeographic signal and used demographic estimators as a proxy for invasion potency. We find contrasting patterns of haplotype diversity amongst the species, where B. zonata has the highest diversity but most haplotypes were represented by singletons; B. correcta has ∼7 dominant haplotypes more evenly distributed; Z. cucurbitae has a single dominant haplotype with closely related singletons in a ‘star-shape’ surrounding it. We discuss how these differing patterns relate to their invasion histories. None of the species showed meaningful phylogeographic patterns, possibly due to gene-flow between areas across their distributions, obscuring or eliminating substructuring.


<em>Abstract</em>.—Litigation regarding reservoir management is increasingly common. I used a range of examples in the United States to show that such litigation is generally ineffective and that most stakeholders can achieve better results through negotiated solutions. This article provides a brief introduction to this type of litigation and illustrates some of its basic limitations. Examples are drawn from several recent interstate disputes of the United States.


<em>Abstract</em>.—Thirteen United States fishery agencies utilized routine supplemental stocking as a means to manage largemouth bass <em>Micropterus salmoides </em>populations in large (>405-ha) reservoirs. State agencies stocking largemouth bass used two strains (i.e., northern and Florida) as well as intergrades. Largemouth bass for stocking were raised in hatcheries, lakeside nursery ponds, or both. Among states, methods used to monitor fish in hatchery ponds and lakeside nursery ponds, the date ponds were drained, and methods to enumerate fish from the ponds varied. Although most states cited bolstering weak year-classes as their main reason for routine stocking, others noted increasing genetic variability within populations and public pressure as reasons that their agencies stocked large reservoirs with largemouth bass. As agencies continue to respond to public pressures for larger fish, they should consider the possible consequences of mixing stocks of largemouth bass. With continued development of agency rearing techniques, especially in lakeside nursery ponds, methods to enumerate fish should be considered to aid in future stocking evaluations. Improved rearing and stocking techniques will allow fisheries managers to utilize resource dollars in a way that provides benefit to anglers while ensuring the sustainability of largemouth bass populations.


<em>Abstract</em> .—The collection and use of data to manage the freshwater fisheries of Australia’s Murray–Darling basin (MDB) has a poor history of success. While there was limited assessment data for early subsistence and commercial fisheries, even after more robust data became available during the 1950s its quality varied across jurisdictions and was often poorly collated, assessments were not completed, and the data were underutilized by management. The fishery for Murray Cod <em>Maccullochella peelii </em> is given as an example, where the fishery declined to the point of closure and then the decline continued to the extent that Murray Cod was listed as a threatened species and all harvest now only occurs through the recreational fishery. Lessons from such poor population assessments have not been fully learned, however, as there remains a paucity of harvest data for this recreational fishery. Without a proper assessment, a true economic valuation of this fishery has not been made. As the MDB is Australia’s food bowl, there are competing demands for water use by agriculture, and without a proper assessment of the worth of the fishery, it is difficult for Murray Cod to be truly considered in either economic or sociopolitical discussions. The poor state of MDB rivers and their fish populations (including Murray Cod) has, however, resulted in political pressure for the development of the sustainable rivers audit, a common assessment method for riverine environmental condition monitoring. This audit undertakes standardized sampling for fish and a range of other variables at a number of fixed and randomly selected sites on a 3-year rotating basis. While the sustainable rivers audit has provided a range of data indicating that the condition of rivers is generally very poor, these data have yet to be fully utilized to determine the potential state of the fisheries (such as Murray Cod) or to set targets for rehabilitation, such as for environmental flows. While, to date, data analyses have been somewhat restricted by fiscal constraints, more comprehensive use of data, together with full fishery valuations, should be seen as the way forward for improved management.


2019 ◽  
Vol 102 (3) ◽  
pp. 480
Author(s):  
Robert W. Jones ◽  
Carlos Illescas-Riquelme ◽  
Víctor López-Martínez ◽  
Néstor Bautista-Martínez ◽  
Charles W. O'Brien

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9564
Author(s):  
Somasundhari Shanmuganandam ◽  
Yiheng Hu ◽  
Tanja Strive ◽  
Benjamin Schwessinger ◽  
Robyn N. Hall

Background European brown hares (Lepus europaeus) and European rabbits (Oryctolagus cuniculus) are invasive pest species in Australia, with rabbits having a substantially larger environmental impact than hares. As their spatial distribution in Australia partially overlaps, we conducted a comparative microbiome study to determine how the composition of gastrointestinal microbiota varies between these species, since this may indicate species differences in diet, physiology, and other internal and external factors. Methods We analysed the faecal microbiome of nine wild hares and twelve wild rabbits from a sympatric periurban reserve in Canberra, Australia, using a 16S rRNA amplicon-based sequencing approach. Additionally, we compared the concordance between results from Illumina and Nanopore sequencing platforms. Results We identified significantly more variation in faecal microbiome composition between individual rabbits compared to hares, despite both species occupying a similar habitat. The faecal microbiome in both species was dominated by the phyla Firmicutes and Bacteroidetes, typical of many vertebrates. Many phyla, including Actinobacteria, Proteobacteria and Patescibacteria, were shared between rabbits and hares. In contrast, bacteria from phylum Verrucomicrobia were present only in rabbits, while phyla Lentisphaerae and Synergistetes were represented only in hares. We did not identify phylum Spirochaetes in Australian hares; this phylum was previously shown to be present at high relative abundance in European hare faecal samples. These differences in the composition of faecal microbiota may be indicative of less discriminate foraging behaviour in rabbits, which in turn may enable them to adapt quicker to new environments, and may reflect the severe environmental impacts that this species has in Australia.


2003 ◽  
Vol 4 (1) ◽  
pp. 19
Author(s):  
Gareth Hughes

The maximum pest limit (MPL) concept was developed as a practical method of implementing quarantine security measures against the import of invasive pest species of plants. The MPL itself is simply a threshold upper limit, above which the pest species in question is deemed capable of establishing a population if imported in a consignment of fruit or vegetables. This limit depends on various biological and ecological characteristics of the pest species in question. Important aspects of implementation relate to how treatment and sampling may be combined to reduce the probability that the MPL will be exceeded. If a specified level of treatment efficacy is required (for example, probit nine level), then choice of an appropriate sample size becomes the main problem for regulatory authorities seeking to maintain quarantine security. Accepted for publication 16 December 2002. Published 13 November 2003.


Sign in / Sign up

Export Citation Format

Share Document