invasive pest species
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 16)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Arsalan Emami-Khoyi ◽  
Thomas W. Agnew ◽  
Matthew G. Adair ◽  
Elaine C. Murphy ◽  
Isma Benmazouz ◽  
...  

Large-scale monitoring of wild populations in remote areas using traditional live-capturing methods is logistically and financially challenging. Devices that can be used to obtain biological material remotely and store it for an extended period have considerable potential to monitor population densities and health status, but their applicability remains largely unexplored. The present study describes a device that collects trace amounts of DNA from the saliva of small mammals that is deposited on the surface of a collection medium (WaxTags®). The device’s performance was evaluated on Australian brushtail possums (Trichosurus vulpecula), an invasive pest species and the most significant vector of bovine tuberculosis infective agent (Mycobacterium bovis), under field conditions in Canterbury, New Zealand. The retrieved DNA was used to amplify eight possum-specific microsatellite markers and bacterial 16S rRNA. The design is mechanically robust, and the quality of the recovered DNA was adequate for microsatellite-based identification of individual possums, estimation of population density, and partial reconstruction of their oral microbiomes as a potential indicator of health. Several medically important bacteria, including strains of environmental Mycobacterium sp., were detected. The design can be refined to monitor other animals’ populations proactively and provide different levels of information necessary to manage wild populations.


2021 ◽  
Author(s):  
Zhongyi Zhan ◽  
Lili Ren ◽  
Linfeng Yu ◽  
Zhiwen Guo ◽  
Yujie Liu ◽  
...  

Abstract In recent years, the red turpentine beetle (RTB), an invasive pest species, has caused extensive pine mortality in North China. Although some studies have theoretically clarified the interference mechanism of multi-level factors with the development of RTB damage, knowledge about this mechanism from the empirical research is still limited. The aim of this study was to determine whether the primary factors influencing RTB occurrence change during different periods of RTB invasion. Stand-level variables of sample plots were obtained through field investigation and the forest resource survey data including forest stand characteristics, topographic characteristics, and soil properties. Remote sensing classified images were to develop the characteristic variables related to landscape composition and configuration around the sample plots at multiple scales. Generalized linear models (GLMs) and generalized linear mixed models (GLMMs) were used to explore the relative importance of stand-level and landscape-level variables in explaining the severity of RTB damage. Result showed that two stand-level factors, aspect and canopy density, were the best predictors of damage in the early stage of RTB invasion. The landscape-level factor, the proportion of Chinese pine (Pinus tabuliformis) patches, was the main predictor of damage in the middle stage of RTB invasion. The most effective spatial scale at which RTB responded to landscape pattern was 250 m. With the increasing severity of RTB damage, the factors driving RTB invasion have shifted from the stand-level to the landscape-level. This calls for an urgent consideration of multi-scale processes to address the changing disturbance regimes in ecosystem management.


2021 ◽  
Author(s):  
Matthew Cock

Abstract E. torus is primarily of concern as a pest of Musa spp. (banana, plantain). The larvae feed on the leaves and construct a large leaf roll in which they feed, thus causing more damage to the leaf that that of feeding alone. Its indigenous range is from northern India and Southern China to South East mainland Asia. It has spread to Mauritius, southern Philippines, Taiwan, Japan and western India. As an introduced pest it is extremely damaging to Musa spp. but has been brought under effective biological control by the introduction of parasitoids in Mauritius and perhaps Taiwan. Because it has been confused with E. thrax in the past, it has not received the attention it deserves as a potential invasive pest species.


Author(s):  
Sarah Petermann ◽  
Sabine Otto ◽  
Gerrit Eichner ◽  
Marc F. Schetelig

AbstractNative to Southeast Asia, the spotted wing drosophila (SWD), Drosophila suzukii Matsumura, rapidly invaded America and Europe in the past 20 years. As a crop pest of soft-skinned fruits with a wide range of host plants, it threatens the fruit industry worldwide, causing enormous economic losses. To control this invasive pest species, an understanding of its population dynamics and structure is necessary. Here, we report the population genetics and development of SWD in Germany from 2017–19 using microsatellite markers over 11 different sample sites. It is the first study that examines SWD’s genetic changes over 3 years compared to multiple international SWD laboratory strains. Results show that SWD populations in Germany are highly homogenous without differences between populations or years, which indicates that populations are well adapted, migrate freely, and multiple invasions from outside Germany either did not take place or are negligible. Such high genetic variability and migration between populations could allow for a fast establishment of the pest species. This is especially problematic with regard to the ongoing spread of this invasive species and could bear a potential for developing pesticide resistance, which could increase the impact of the SWD further in the future.


2020 ◽  
Vol 7 (11) ◽  
pp. 201371
Author(s):  
Carol L. Bedoya ◽  
Eckehard G. Brockerhoff ◽  
Michael Hayes ◽  
Tracy C. Leskey ◽  
William R. Morrison ◽  
...  

The brown marmorated stink bug, Halyomorpha halys (Heteroptera: Pentatomidae), is regarded as one of the world's most pernicious invasive pest species, as it feeds on a wide range of economically important crops. During the autumn dispersal period, H. halys ultimately moves to potential overwintering sites, such as human-made structures or trees where it will alight and seek out a final overwintering location, often aggregating with other adults. The cues used during this process are unknown, but may involve vibrational signals. We evaluated whether vibrational signals regulate cluster aggregation in H. haly s in overwintering site selection. We collected acoustic data for six weeks during the autumn dispersal period and used it to quantify movement and detect vibrational communication of individuals colonizing overwintering shelters. Both movement and vibrational signal production increased after the second week, reaching their maxima in week four, before decaying again. We found that only males produced vibrations in this context, yet there was no correlation between movement and vibrational signals , which was confirmed through playback experiments. The cues regulating the formation of aggregations remain largely unknown, but vibrations may indicate group size.


2020 ◽  
Vol 71 (4) ◽  
pp. 257-272
Author(s):  
Onat Başbay ◽  
Mudar Salimeh ◽  
Eddie John

We review the continuing and extensive spread of Papilio demoleus in south-eastern Turkey and in regions of Turkey and Syria adjacent to the north-eastern Mediterranean. Since the authors documented the arrival of this attractive but potentially destructive papilionid species at coastal areas of Syria in 2019, regular monitoring has confirmed successful overwintering there, as well as in Turkey. As previously indicated, P. demoleus is widely recognized as an invasive pest species in Citrus-growing areas of the world and hence its arrival is of potential economic importance to a region in which citrus is widely grown.


2020 ◽  
Vol 1 (1) ◽  
pp. 06-11
Author(s):  
Kushal Naharki ◽  
Sabina Regmi ◽  
Niruta Shrestha

Nepal faces a significant risk of invasive species posing a direct threat to food security and native biodiversity. With the potentiality of causing a considerable loss in yield and quality, invasive pest species can lead to significant damage in the Nepalese agricultural sector. Fall armyworm is a polyphagous, transboundary invasive pest that invaded Nepal in August 2019. They have a wide host range, the potentiality to establish rapidly and are highly migratory. Maize is the major host of fall armyworm which comes second in terms of production and area cultivated in Nepal. Spread and establishment of this pest are enhanced during the monsoon season of the country with favorable climate and temperature. This review presents an introductory pathway of the invasive pest, biology, lifecycle, status, and management of fall armyworm in Nepal. Integrated pest management can be the best approach for the management of this pest. Control of this invasive pest requires early monitoring, scientific research, and management strategy with awareness, knowledge, and technical support to Nepalese farmers.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9564
Author(s):  
Somasundhari Shanmuganandam ◽  
Yiheng Hu ◽  
Tanja Strive ◽  
Benjamin Schwessinger ◽  
Robyn N. Hall

Background European brown hares (Lepus europaeus) and European rabbits (Oryctolagus cuniculus) are invasive pest species in Australia, with rabbits having a substantially larger environmental impact than hares. As their spatial distribution in Australia partially overlaps, we conducted a comparative microbiome study to determine how the composition of gastrointestinal microbiota varies between these species, since this may indicate species differences in diet, physiology, and other internal and external factors. Methods We analysed the faecal microbiome of nine wild hares and twelve wild rabbits from a sympatric periurban reserve in Canberra, Australia, using a 16S rRNA amplicon-based sequencing approach. Additionally, we compared the concordance between results from Illumina and Nanopore sequencing platforms. Results We identified significantly more variation in faecal microbiome composition between individual rabbits compared to hares, despite both species occupying a similar habitat. The faecal microbiome in both species was dominated by the phyla Firmicutes and Bacteroidetes, typical of many vertebrates. Many phyla, including Actinobacteria, Proteobacteria and Patescibacteria, were shared between rabbits and hares. In contrast, bacteria from phylum Verrucomicrobia were present only in rabbits, while phyla Lentisphaerae and Synergistetes were represented only in hares. We did not identify phylum Spirochaetes in Australian hares; this phylum was previously shown to be present at high relative abundance in European hare faecal samples. These differences in the composition of faecal microbiota may be indicative of less discriminate foraging behaviour in rabbits, which in turn may enable them to adapt quicker to new environments, and may reflect the severe environmental impacts that this species has in Australia.


2020 ◽  
Vol 152 (4) ◽  
pp. 490-515 ◽  
Author(s):  
Yvonne Young ◽  
Tristan A.F. Long

AbstractThe characteristics of the juvenile developmental environment of an individual can have many important consequences for their adult reproductive success as it may shape the development and expression of phenotypes that are relevant to the later operation of sexual selection. Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is an economically important invasive pest species that lays its eggs in many types of soft fruits and potentially experiences large intrapopulation spatial and temporal variation in its nutritional developmental environments. Here, we examine whether the larval nutritional developmental environment influences D. suzukii mate choice, egg production, and offspring performance. Using D. suzukii raised on diets differing in their nutritional quality, we examined mating preferences, fecundity, and offspring survivorship in “no-choice,” “female choice,” and “male choice” reproductive contexts. We found evidence for both adaptive and nonadaptive mate choice behaviours associated with the phenotypes of D. suzukii that had developed in different nutritional environments. These results reveal the complex nature of the relationship between the developmental environment and individual reproductive success in D. suzukii, which has important potential implications for future management plans involving this species.


Sign in / Sign up

Export Citation Format

Share Document