TARGET HIT INTERCEPTOR MID-COURSE GUIDANCE SCHEME FOR BALLISTIC MISSILE INTERCEPTION

Author(s):  
N. PRABHAKAR ◽  
K. CHANDRA SEKHAR ◽  
V. VAIDIYANATHAN

A Mid-course guidance algorithm has been developed for an exo-atmospheric interceptor to neutralize an incoming high speed ballistic Target. The guidance scheme positions the interceptor ahead of the target so that the velocity vectors of the target and interceptors are in the same direction. As the interceptors used in ballistic missile defence have a lower velocity than the incoming target, the target approaches the interceptor. The guidance scheme reduces the closing velocity compared to a head on approach thereby increasing the homing time for a given terminal sensor detection range. The guidance law is validated through numerical simulation.

AIAA Journal ◽  
1998 ◽  
Vol 36 ◽  
pp. 1223-1229
Author(s):  
Ge-Cheng Zha ◽  
Doyle Knight ◽  
Donald Smith ◽  
Martin Haas

2016 ◽  
Vol 37 (7) ◽  
pp. 729-739
Author(s):  
GU Xin-bao ◽  
◽  
ZHOU Xiao-ping ◽  
XU Xiao ◽  

1959 ◽  
Vol 63 (585) ◽  
pp. 508-512 ◽  
Author(s):  
K. W. Mangler

When a body moves through air at very high speed at such a height that the air can be considered as a continuum, the distinction between sharp and blunt noses with their attached or detached bow shocks loses its significance, since, in practical cases, the bow wave is always detached and fairly strong. In practice, all bodies behave as blunt shapes with a smaller or larger subsonic region near the nose where the entropy and the corresponding loss of total head change from streamline to streamline due to the curvature of the bow shock. These entropy gradients determine the behaviour of the hypersonic flow fields to a large extent. Even in regions where viscosity effects are small they give rise to gradients of the velocity and shear layers with a lower velocity and a higher entropy near the surface than would occur in their absence. Thus one can expect to gain some relief in the heating problems arising on the surface of the body. On the other hand, one would lose farther downstream on long slender shapes as more and more air of lower entropy is entrained into the boundary layer so that the heat transfer to the surface goes up again. Both these flow regions will be discussed here for the simple case of a body of axial symmetry at zero incidence. Finally, some remarks on the flow field past a lifting body will be made. Recently, a great deal of information on these subjects has appeared in a number of reviewing papers so that little can be added. The numerical results on the subsonic flow regions in Section 2 have not been published before.


Author(s):  
Kun Ting Eddie Chua ◽  
Karia Dibert ◽  
Mark Vogelsberger ◽  
Jesús Zavala

Abstract We study the effects of inelastic dark matter self-interactions on the internal structure of a simulated Milky Way (MW)-size halo. Self-interacting dark matter (SIDM) is an alternative to collisionless cold dark matter (CDM) which offers a unique solution to the problems encountered with CDM on sub-galactic scales. Although previous SIDM simulations have mainly considered elastic collisions, theoretical considerations motivate the existence of multi-state dark matter where transitions from the excited to the ground state are exothermic. In this work, we consider a self-interacting, two-state dark matter model with inelastic collisions, implemented in the Arepo code. We find that energy injection from inelastic self-interactions reduces the central density of the MW halo in a shorter timescale relative to the elastic scale, resulting in a larger core size. Inelastic collisions also isotropize the orbits, resulting in an overall lower velocity anisotropy for the inelastic MW halo. In the inner halo, the inelastic SIDM case (minor-to-major axis ratio s ≡ c/a ≈ 0.65) is more spherical than the CDM (s ≈ 0.4), but less spherical than the elastic SIDM case (s ≈ 0.75). The speed distribution f(v) of dark matter particles at the location of the Sun in the inelastic SIDM model shows a significant departure from the CDM model, with f(v) falling more steeply at high speeds. In addition, the velocity kicks imparted during inelastic collisions produce unbound high-speed particles with velocities up to 500 km s−1 throughout the halo. This implies that inelastic SIDM can potentially leave distinct signatures in direct detection experiments, relative to elastic SIDM and CDM.


Author(s):  
Min-Guk Seo ◽  
Min-Jea Tahk

This paper deals with the closed-loop form of mid-course guidance law design for accelerating missile system, whose acceleration is approximately constant. A midcourse guidance algorithm of feedback form is proposed to satisfy the engagement geometry conditions at the burn-out time for terminal homing performance enhancement. The effect of velocity change due to missile acceleration is explicitly considered in the derivation of the guidance law. The terminal constraint update algorithm is proposed under the assumption that the target trajectory is predicted precisely. Simulation results are provided to show the performance and characteristics of the proposed algorithm.


2011 ◽  
Vol 97-98 ◽  
pp. 698-701
Author(s):  
Ming Lu Zhang ◽  
Yi Ren Yang ◽  
Li Lu ◽  
Chen Guang Fan

Large eddy simulation (LES) was made to solve the flow around two simplified CRH2 high speed trains passing by each other at the same speed base on the finite volume method and dynamic layering mesh method and three dimensional incompressible Navier-Stokes equations. Wind tunnel experimental method of resting train with relative flowing air and dynamic mesh method of moving train were compared. The results of numerical simulation show that the flow field structure around train is completely different between wind tunnel experiment and factual running. Two opposite moving couple of point source and point sink constitute the whole flow field structure during the high speed trains passing by each other. All of streamlines originate from point source (nose) and finish with the closer point sink (tail). The flow field structure around train is similar with different vehicle speed.


Author(s):  
Yasmin Khakpour ◽  
Miad Yazdani

In this work, numerical simulation is used to study the stability enhancement of high speed supercavitating hydrofoils. Although supercavitation is known as one of the most effective methods for drag reduction, producing the cavity, either by ventilation or by cavitator at front of the body, may cause some instabilities on cavity surface and thus on the projectile’s motion. Therefore removing these instabilities comes as an important point of discussion. First of all, we calculate the sources of instabilities and measure respective forces and then present some approaches that significantly reduce these instabilities. One of these methods that could produce more stable supercavities is injecting of the air into the cavity unsteadily which varies through the projectile’s surface. This approach is provided by arrays of slots distributed on the projectile’s surface and unsteady injection is modeled over the surface. Furthermore, the position of ventilation, dramatically affects the stability like those in aerodynamics. In all approaches it is assumed that the supercavity covers the whole of the body, however the forces caused by the wakes, formed behind the body are taken into account. The calculation is performed at three cavitation numbers with respective velocities of 40 m/s, 50 m/s, 60 m/s.


Sign in / Sign up

Export Citation Format

Share Document