Numerical Simulation of Flowfield around High Speed Trains Passing by each other at the same Speed

2011 ◽  
Vol 97-98 ◽  
pp. 698-701
Author(s):  
Ming Lu Zhang ◽  
Yi Ren Yang ◽  
Li Lu ◽  
Chen Guang Fan

Large eddy simulation (LES) was made to solve the flow around two simplified CRH2 high speed trains passing by each other at the same speed base on the finite volume method and dynamic layering mesh method and three dimensional incompressible Navier-Stokes equations. Wind tunnel experimental method of resting train with relative flowing air and dynamic mesh method of moving train were compared. The results of numerical simulation show that the flow field structure around train is completely different between wind tunnel experiment and factual running. Two opposite moving couple of point source and point sink constitute the whole flow field structure during the high speed trains passing by each other. All of streamlines originate from point source (nose) and finish with the closer point sink (tail). The flow field structure around train is similar with different vehicle speed.

2011 ◽  
Vol 117-119 ◽  
pp. 670-673
Author(s):  
Ming Lu Zhang ◽  
Yi Ren Yang ◽  
Li Lu ◽  
Chen Guang Fan

Large eddy simulation (LES) was made to solve the flow around two simplified CRH2 high speed trains passing by each other at the same speed in a long tunnel base on the finite volume method and dynamic layering mesh method and three dimensional incompressible Navier-Stokes equations. Wind tunnel experimental method of resting train with relative flowing air and dynamic mesh method of moving train were compared. The results of numerical simulation show that the flow field structure around train is completely different between wind tunnel experiment and factual running. Two opposite moving couple of point source and point sink constitute the whole flow field structure during the high speed trains passing by each other. All of streamlines originate from point source (nose) and finish with the closer point sink (tail). The flow field structure around train is similar with different vehicle speed in a long tunnel, and they have a little difference with on the ground.


2011 ◽  
Vol 66-68 ◽  
pp. 1878-1882
Author(s):  
Ming Lu Zhang ◽  
Yi Ren Yang ◽  
Chen Guang Fan ◽  
Li Lu

The aerodynamic performances of a high speed train will significant change under the action of the crosswind. Large eddy simulation (LES) was made to solve the flow around a simplified CRH2 high speed train with 250km/h and 350km/h under the influence of a crosswind with 28.4m/s base on the finite volume method and dynamic layering mesh method and three dimensional incompressible Navier-Stokes equations. Wind tunnel experimental method of static train with relative flowing air and dynamic mesh method of moving train were compared. The results of numerical simulation show that the flow field around train is completely different between Wind tunnel experiment and factual running. Many vortices will be produced on the leeside of the train with alternately vehicle bottom and back under the influence of a crosswind. The flow field around train is similar with different vehicle speed.


2014 ◽  
Vol 590 ◽  
pp. 69-73
Author(s):  
Yu Wang ◽  
Qiang Gao ◽  
Hai Lin Wang

In this paper, the wind-induced response of the ADSS is analyzed when the high-speed trains pass by. The wind flow field of the high-speed train is simulated based on the three-dimensional Reynolds-averaged Navier–Stokes equations, combined with the k-ε turbulence model. The result is shown that the wind load acting on the ADSS is quite low and the stress of the line clamp increases a little.


Author(s):  
Alireza Mahdavi Nejad ◽  
David J. Olinger ◽  
Gretar Tryggvason

A computational model of a massless kite that produces power in an airborne wind energy system (AWE) is presented. AWE systems use tethered kites at high altitudes to extract energy from the wind, and are being considered as an alternative to wind turbines since the kites can move in high-speed cross-wind motions over large swept areas to increase power production. In our model the kite completes successive power-retraction cycles where the kite angle of attack is altered as required to vary the resultant aerodynamic forces on the kite. The numerical simulation models the flow field in a two-dimensional domain near the flexible kite by solving the full Navier-Stokes equations. Eulerian grid points for the flow domain together with a Lagrangian representation of the kite are employed. The flow field is determined through a second-order finite difference projection method using a non-uniform mesh on a staggered grid. A corrector-predictor technique is employed to ensure the second-order accuracy in time of the numerical simulation. The two-dimensional kite shape is modeled as a slightly cambered immersed boundary that evolves with the flow. The flexible kite surface is modeled with a set of linear springs following Hooke’s law. The unstretched length of each elastic tether at a given time step is controlled using periodic triangular wave shapes to achieve the required power-retraction phases. A study was conducted in which the wave shape amplitude, frequency, and phase (between two tethers) was adjusted to achieve a suitably high net power output with very good agreement to predictions for Loyd’s simple kite in two-dimensional motion. Aerodynamic coefficients for the kite, tether tensions, tether reel-out and reel-in speeds, and vorticity flowfields in the kite wake are also determined.


2005 ◽  
Author(s):  
Vincent G. Chapin ◽  
Romaric Neyhousser ◽  
Stephane Jamme ◽  
Guillaume Dulliand ◽  
Patrick Chassaing

In this paper we propose a rational viscous Computational Fluid Dynamics (CFD) methodology applied to sailing yacht rig aerodynamic design and analysis. After an outlook of present challenges in high speed sailing, we emphasized the necessity of innovation and CFD to conceive, validate and optimize new aero-hydrodynamic concepts. Then, we present our CFD methodology through CAD, mesh generation, numerical and physical modelling choices, and their validation on typical rig configurations through wind-tunnel test comparisons. The methodology defined, we illustrate the relevance and wide potential of advanced numerical tools to investigate sailing yacht rig design questions like the relation between sail camber, propulsive force and aerodynamic finesse, and like the mast-mainsail non linear interaction. Through these examples, it is shown how sailing yacht rig improvements may be drawn by using viscous CFD based on Reynolds Averaged Navier-Stokes equations (RANS). Then the extensive use of viscous CFD, rather than wind-tunnel tests on scale models, for the evaluation or ranking of improved designs with increased time savings. Viscous CFD methodology is used on a preliminary study of the complex and largely unknown Yves Parlier Hydraplaneur double rig. We show how it is possible to increase our understanding of his flow physics with strong sail interactions, and we hope this methodology will open new roads toward optimized design. Throughout the paper, the necessary comparison between CFD and wind-tunnel test will be presented to focus on limitations and drawbacks of viscous CFD tools, and to address future improvements.


Author(s):  
Lifu Wang ◽  
Dongyan Shi ◽  
Zhixun Yang ◽  
Guangliang Li ◽  
Chunlong Ma ◽  
...  

Abstract To further investigate and improve the cleaning ability of the cavitation nozzle, this paper proposes a new model that is based on the Helmholtz nozzle and with the quadratic equation curve as the outer contour of the cavitation chamber. First, the numerical simulation of the flow field in the nozzle chamber was conducted using FLUENT software to analyze and compare the impact of the curve parameters and Reynolds number on the cleaning effect. Next, the flow field was captured by a high-speed camera in order to study the cavitation cycle and evolution process. Then, experiments were performed to compare the cleaning effect of the new nozzle with that of the Helmholtz nozzle. The study results demonstrate that effective cavitation does not occur when the diameter of the cavitation chamber is too large. For the new nozzle, with the increase of the Reynolds number, the degree of cavitation in the chamber first increases and then decreases; the cleaning effect is much better than that of a traditional Helmholtz nozzle under the same conditions; the nozzle has the best cleaning effect for the stand-off distance of 300 mm.


Author(s):  
Liang Ling ◽  
Xinbiao Xiao ◽  
Xuesong Jin

In order to investigate the derailment mechanism and safety operation area of high-speed trains under earthquake, a coupled vehicle-track dynamic model considering earthquake effect is developed, in which the vehicle is modeled as a 35 degrees of freedom (DOF) multibody system with nonlinear suspension characteristic and the slab track is modeled as a discrete elastic support model. The rails of the track are assumed to be Timoshenko beams supported by discrete rail fasteners, and the slabs are modeled with solid finite elements. The system motion equations are solved by means of an explicit integration method in time domain. The present work analyzes in detail the effect of earthquake characteristics on the dynamical behaviors of a vehicle-track coupling system and the transient derailment criteria. The considered derailment criteria include the ratio of the wheel/rail lateral force to the vertical force, the wheel loading reduction, the wheel/rail contact point traces on the wheel tread, and the wheel rise with respect to the rail top, respectively. The present work also finds the safety operation area, the derailment area, and the warning area of high-speed trains under earthquake, and their boundaries. These areas consist of three key parameters influencing the dynamical behavior of high-speed train and track under earthquake. The three key influencing parameters are, respectively, the vehicle speed and the lateral and vertical peak ground acceleration (PGA) of an earthquake. The results obtained indicate that the lateral earthquake motion has a greater influence on the vehicle dynamic behavior and its running safety compared to the vertical earthquake motion. The risk of derailment increases quickly with the increasing of lateral earthquake motion amplitude. The lateral earthquake motion is dominant in the vehicle running safety influenced by an earthquake. While the vertical earthquake motion promotes jumping of the wheels easily, not easy is flange climb derailment. And the effect of the vehicle speed is not significant under earthquake.


Sign in / Sign up

Export Citation Format

Share Document