Some Special Aspects of Hypersonic Flow Fields

1959 ◽  
Vol 63 (585) ◽  
pp. 508-512 ◽  
Author(s):  
K. W. Mangler

When a body moves through air at very high speed at such a height that the air can be considered as a continuum, the distinction between sharp and blunt noses with their attached or detached bow shocks loses its significance, since, in practical cases, the bow wave is always detached and fairly strong. In practice, all bodies behave as blunt shapes with a smaller or larger subsonic region near the nose where the entropy and the corresponding loss of total head change from streamline to streamline due to the curvature of the bow shock. These entropy gradients determine the behaviour of the hypersonic flow fields to a large extent. Even in regions where viscosity effects are small they give rise to gradients of the velocity and shear layers with a lower velocity and a higher entropy near the surface than would occur in their absence. Thus one can expect to gain some relief in the heating problems arising on the surface of the body. On the other hand, one would lose farther downstream on long slender shapes as more and more air of lower entropy is entrained into the boundary layer so that the heat transfer to the surface goes up again. Both these flow regions will be discussed here for the simple case of a body of axial symmetry at zero incidence. Finally, some remarks on the flow field past a lifting body will be made. Recently, a great deal of information on these subjects has appeared in a number of reviewing papers so that little can be added. The numerical results on the subsonic flow regions in Section 2 have not been published before.

1965 ◽  
Vol 21 (3) ◽  
pp. 495-501 ◽  
Author(s):  
M. I. G. Bloor

The Newtonian theory of inviscid hypersonic flow is extended to obtain a solution uniformly valid in the subsonic region, and that is used to determine the position and shape of the sonic line. The main modification to the theory has to be made near the body surface and an expansion, essentially in terms of the stream function, is employed.For simplicity the solution is limited to the cases of axially- and plane-symmetric flows. As an illustration of the theory the flows past a sphere and a circular cylinder are treated in some detail. Comparison with the numerical results of Garabedian and Lieberstein gives favourable agreement.


Author(s):  
Kun Ting Eddie Chua ◽  
Karia Dibert ◽  
Mark Vogelsberger ◽  
Jesús Zavala

Abstract We study the effects of inelastic dark matter self-interactions on the internal structure of a simulated Milky Way (MW)-size halo. Self-interacting dark matter (SIDM) is an alternative to collisionless cold dark matter (CDM) which offers a unique solution to the problems encountered with CDM on sub-galactic scales. Although previous SIDM simulations have mainly considered elastic collisions, theoretical considerations motivate the existence of multi-state dark matter where transitions from the excited to the ground state are exothermic. In this work, we consider a self-interacting, two-state dark matter model with inelastic collisions, implemented in the Arepo code. We find that energy injection from inelastic self-interactions reduces the central density of the MW halo in a shorter timescale relative to the elastic scale, resulting in a larger core size. Inelastic collisions also isotropize the orbits, resulting in an overall lower velocity anisotropy for the inelastic MW halo. In the inner halo, the inelastic SIDM case (minor-to-major axis ratio s ≡ c/a ≈ 0.65) is more spherical than the CDM (s ≈ 0.4), but less spherical than the elastic SIDM case (s ≈ 0.75). The speed distribution f(v) of dark matter particles at the location of the Sun in the inelastic SIDM model shows a significant departure from the CDM model, with f(v) falling more steeply at high speeds. In addition, the velocity kicks imparted during inelastic collisions produce unbound high-speed particles with velocities up to 500 km s−1 throughout the halo. This implies that inelastic SIDM can potentially leave distinct signatures in direct detection experiments, relative to elastic SIDM and CDM.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 593
Author(s):  
Ryota Yanagisawa ◽  
Shunsuke Shigaki ◽  
Kotaro Yasui ◽  
Dai Owaki ◽  
Yasuhiro Sugimoto ◽  
...  

In this study, we fabricated a novel wearable vibration sensor for insects and measured their wing flapping. An analysis of insect wing deformation in relation to changes in the environment plays an important role in understanding the underlying mechanism enabling insects to dynamically interact with their surrounding environment. It is common to use a high-speed camera to measure the wing flapping; however, it is difficult to analyze the feedback mechanism caused by the environmental changes caused by the flapping because this method applies an indirect measurement. Therefore, we propose the fabrication of a novel film sensor that is capable of measuring the changes in the wingbeat frequency of an insect. This novel sensor is composed of flat silver particles admixed with a silicone polymer, which changes the value of the resistor when a bending deformation occurs. As a result of attaching this sensor to the wings of a moth and a dragonfly and measuring the flapping of the wings, we were able to measure the frequency of the flapping with high accuracy. In addition, as a result of simultaneously measuring the relationship between the behavior of a moth during its search for an odor source and its wing flapping, it became clear that the frequency of the flapping changed depending on the frequency of the odor reception. From this result, a wearable film sensor for an insect that can measure the displacement of the body during a particular behavior was fabricated.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Joseph J. S. Shang ◽  
Hong Yan

Abstract Nearly all illuminating classic hypersonic flow theories address aerodynamic phenomena as a perfect gas in the high-speed range and at the upper limit of continuum gas domain. The hypersonic flow is quantitatively defined by the Mach number independent principle, which is derived from the asymptotes of the Rankine-Hugoniot relationship. However, most hypersonic flows encounter strong shock-wave compressions resulting in a high enthalpy gas environment that always associates with nonequilibrium thermodynamic and quantum chemical-physics phenomena. Under this circumstance, the theoretic linkage between the microscopic particle dynamics and macroscopic thermodynamics properties of gas is lost. When the air mixture is ionized to become an electrically conducting medium, the governing physics now ventures into the regimes of quantum physics and electromagnetics. Therefore, the hypersonic flows are no longer a pure aerodynamics subject but a multidisciplinary science. In order to better understand the realistic hypersonic flows, all pertaining disciplines such as the nonequilibrium chemical kinetics, quantum physics, radiative heat transfer, and electromagnetics need to bring forth.


2021 ◽  
Vol 11 (4) ◽  
pp. 1700
Author(s):  
Lemiao Qiu ◽  
Huifang Zhou ◽  
Zili Wang ◽  
Shuyou Zhang ◽  
Lichun Zhang ◽  
...  

As the demand for high-speed elevators grows, the requirements of elevator performance have also developed. The high speed will produce strong airflow disturbances and drastic pressure changes, which is prone to cause passenger discomfort. In this paper, an elevator car air pressure compensation method based on coupling analysis of internal and external flow fields (IE-FF) is proposed. It helps to adaptively track the ideal air pressure curve (IAPC) inside the car and controls the air pressure fluctuation to improve the ride comfort of the elevator. To obtain the air pressure transient value in the elevator car, an IE-FF modeling method is proposed. Based on the IE-FF model, the air pressure compensation system is developed. To realize the air pressure compensation inside the car, an adaptive iterative learning control (A-ILC) algorithm is proposed, to eliminate the passengers’ ear pressing due to the severe air pressure fluctuation. To verify the proposed method, the KLK2 (Canny Elevator Co., Ltd., 2015, Suzhou, China) high-speed elevator is applied. The numerical experiment results show that the proposed method has higher tracking accuracy and convergence speed compared to the classical Proportion Integral Differential (PID) algorithm and the Proportion Integral-iterative learning control (PD-ILC) algorithm.


1987 ◽  
Vol 3 (3) ◽  
pp. 264-275 ◽  
Author(s):  
Alexander Bahlsen ◽  
Benno M. Nigg

Impact forces analysis in heel-toe running is often used to examine the reduction of impact forces for different running shoes and/or running techniques. Body mass is reported to be a dominant predictor of vertical impact force peaks. However, it is not evident whether this finding is only true for the real body mass or whether it is also true for additional masses attached to the body (e.g., running with additional weight or heavy shoes). The purpose of this study was to determine the effect of additional mass on vertical impact force peaks and running style. Nineteen subjects (9 males, 10 females) with a mean mass of 74.2 kg/56.2 kg (SD = 10.0 kg and 6.0 kg) volunteered to participate in this study. Additional masses were attached to the shoe (.05 and .1 kg), the tibia (.2, .4, .6 kg), and the hip (5.9 and 10.7 kg). Force plate measurements and high-speed film data were analyzed. In this study the vertical impact force peaks, Fzi, were not affected by additional masses, the vertical active force peaks, Fza, were only affected by additional masses greater than 6 kg, and the movement was only different in the knee angle at touchdown, ϵ0, for additional masses greater than .6 kg. The results of this study did not support findings reported earlier in the literature that body mass is a dominant predictor of external vertical impact force peaks.


2015 ◽  
Vol 766 ◽  
pp. 337-367 ◽  
Author(s):  
Bartosz Protas ◽  
Bernd R. Noack ◽  
Jan Östh

AbstractWe propose a variational approach to the identification of an optimal nonlinear eddy viscosity as a subscale turbulence representation for proper orthogonal decomposition (POD) models. The ansatz for the eddy viscosity is given in terms of an arbitrary function of the resolved fluctuation energy. This function is found as a minimizer of a cost functional measuring the difference between the target data coming from a resolved direct or large-eddy simulation of the flow and its reconstruction based on the POD model. The optimization is performed with a data-assimilation approach generalizing the 4D-VAR method. POD models with optimal eddy viscosities are presented for a 2D incompressible mixing layer at $\mathit{Re}=500$ (based on the initial vorticity thickness and the velocity of the high-speed stream) and a 3D Ahmed body wake at $\mathit{Re}=300\,000$ (based on the body height and the free-stream velocity). The variational optimization formulation elucidates a number of interesting physical insights concerning the eddy-viscosity ansatz used. The 20-dimensional model of the mixing-layer reveals a negative eddy-viscosity regime at low fluctuation levels which improves the transient times towards the attractor. The 100-dimensional wake model yields more accurate energy distributions as compared to the nonlinear modal eddy-viscosity benchmark proposed recently by Östh et al. (J. Fluid Mech., vol. 747, 2014, pp. 518–544). Our methodology can be applied to construct quite arbitrary closure relations and, more generally, constitutive relations optimizing statistical properties of a broad class of reduced-order models.


2003 ◽  
Vol 9 (7) ◽  
pp. 791-804 ◽  
Author(s):  
John Dzielski ◽  
Andrew Kurdila

At very high speeds, underwater bodies develop cavitation bubbles at the trailing edges of sharp corners or from contours where adverse pressure gradients are sufficient to induce flow separation. Coupled with a properly designed cavitator at the nose of a vehicle, this natural cavitation can be augmented with gas to induce a cavity to cover nearly the entire body of the vehicle. The formation of the cavity results in a significant reduction in drag on the vehicle and these so-called high-speed supercavitating vehicles (HSSVs) naturally operate at speeds in excess of 75 m s-1. The first part of this paper presents a derivation of a benchmark problem for control of HSSVs. The benchmark problem focuses exclusively on the pitch-plane dynamics of the body which currently appear to present the most severe challenges. A vehicle model is parametrized in terms of generic parameters of body radius, body length, and body density relative to the surrounding fluid. The forebody shape is assumed to be a right cylindrical cone and the aft two-thirds is assumed to be cylindrical. This effectively parametrizes the inertia characteristics of the body. Assuming the cavitator is a flat plate, control surface lift curves are specified relative to the cavitator effectiveness. A force model for a planing afterbody is also presented. The resulting model is generally unstable whenever in contact with the cavity and stable otherwise, provided the fin effectiveness is large enough. If it is assumed that a cavity separation sensor is not available or that the entire weight of the body is not to be carried on control surfaces, limit cycle oscillations generally result. The weight of the body inevitably forces the vehicle into contact with the cavity and the unstable mode; the body effectively skips on the cavity wall. The general motion can be characterized by switching between two nominally linear models and an external constant forcing function. Because of the extremely short duration of the cavity contact, direct suppression of the oscillations and stable planing appear to present severe challenges to the actuator designer. These challenges are investigated in the second half of the paper, along with several approaches to the design of active control systems.


Sign in / Sign up

Export Citation Format

Share Document