3D electric field analysis of needleless electrospinning from a ring coil

2013 ◽  
Vol 44 (3) ◽  
pp. 463-476 ◽  
Author(s):  
Xin Wang ◽  
Xungai Wang ◽  
Tong Lin

Concentrated electric field is crucial in generation of needleless electrospinning, the electric field profile together with electric field strength of the spinneret affect the needleless electrospinning performance directly. Understanding the electric field of spinneret would definitely benefit the designing and optimization of needleless electrospinning. Based on the software COMSOL Multiphysics 3.5a, 3D finite element analysis has been used to analyze the electric field profile and electric field strength of a ring spinneret for needleless electrospinning. The electric field profile shows that strong electric field concentrates on the top of the ring with intensity higher than 70 kV/cm. The electric field of ring spinneret is greatly affected by the geometry of the ring and other experimental parameters such as applied voltage and collecting distance. The electric field analysis introduced in this study will be helpful in selecting proper spinneret and scaling up the production rate of nanofibers in needleless electrospinning.

2012 ◽  
Vol 516-517 ◽  
pp. 1517-1520
Author(s):  
Jian Xun Hu ◽  
Gong Da Zhang ◽  
Hong Yu Zhang ◽  
Xiao Qin Zhang

Using the finite element analysis, this work analyzed the electric field distribution of 220kV transmission steel tower with double-circuit and composite material transmission tower with the same size, and compared the electric field effect of two materials transmission tower for surroundings. And this work compared the vertical and axial electric field distribution along transmission line of the two materials transmission tower. The results indicate the composite material tower can improve the environment of electric field near the transmission lines.


Author(s):  
Rahul Krishnan ◽  
Subhajit Samanta ◽  
Sudha R ◽  
K Govardhan

This paper involves designing and applying electric field analysis on multiple long rod insulators. Quality HV insulators are an integral part of power systems because they separate the Transmission lines carrying high voltages from the grounded poles. They must have the ability to withstand both high electrical and mechanical stress. So for this purpose modeling of long rod insulator was done with multiple materials such as ceramic, porcelain, and fiber glass and silicon rubber. Electric field analysis can be used to determine voltage profile of each material which in turn can be used to determine how much electrical stress the material can undertake. An attempt was made to model existing long rod insulator designs using software like Solidworks. Subsequently modifications were made to the design by changing parameters such as diameter of the insulator body, angle made by insulator cups etc. These models were then subjected to electric field analysis using finite element analysis software such as Elecnet or Comsol Multiphysics in order to identify the points where maximum electric field stress exists. Further modifications were made on order to reduce and equalize the electric field over the insulator surface.


2017 ◽  
Vol 50 ◽  
pp. 78-89 ◽  
Author(s):  
Hadi Samadian ◽  
Hamid Mobasheri ◽  
Saeed Hasanpour ◽  
Reza Faridi Majid

In the present study, the effects of different parameters of needleless electrospinning systems on polyacrylonitrile (PAN) nanofibers morphology and diameter were studied. The electric field profile at the surface of the spinneret and electrospinning zone was evaluated by Finite Element Method. The PAN nanofibers were used as the precursor to fabricate carbon nanofibers. Scanning electron microscope (SEM), X-ray diffraction and Raman spectroscopy were used for electrospun nanofibers analysis. The results of electric field analysis indicated, in the spinning direction, the electric field was concentrated at the surface of the spinneret and decayed rapidly toward the surface of the collector. Increasing polymer solution concentration from 7.00 to 11.00 wt.% resulted increasing nanofibers diameter form 77.76 ± 19.44 to 202.42 ± 36.85. The results of X-ray diffraction and Raman spectroscopy show that heat treatments could convert needleless electrospun PAN nanofibers to carbon nanofibers.


2013 ◽  
Vol 732-733 ◽  
pp. 1052-1055
Author(s):  
Yu Mei Li ◽  
Tao Ding ◽  
Zong Tao Chen

The insulation mechanism of UHVDC wall bushing is discussed. Design solution of the insulation structure is determined. In the solution, internal insulation includes SF6 gas-insulated and shielding structure, and external insulation is a type of composite insulating material, which is made up of epoxy FRP pipe and silicone rubber sheds. Creepage distance of external insulation and two types of shielding structures are designed in the paper. Finally two types of shielding structure are compared and optimized based on electric field simulation, and the result shows that dual-plate grounded shielding can enable the electric field strength of UHVDC wall bushing more evenly distributed.


2020 ◽  
Author(s):  
Artem Syssoev ◽  
Dmitry Iudin

<p>It’s a common knowledge for the spark discharge researches that there are space leaders inside the negative leader streamer zone. They arise from plasma formations of the volume of about 1 cm<sup>3</sup> which are called space stems. But there is no any established idea about how space stems form in conditions when the background electric field magnitude inside a negative leader corona is about three times less than the dielectric strength of air. In this study, we propose a new mechanism of space stem precursors (ionization centers, which are capable to generate positive streamers) formation which is based on the joint action of ionization and drifting processes. The most possible location of proposed mechanism realization is the external boundary of the negative corona streamer burst, where electric field strength reaches a maximum value. The process takes place in the presence of strongly inhomogeneous stochastic electric field relief, which is formed by chaotically positioned clusters of negative charge transported to the negative corona streamer burst periphery by the negative streamer heads. The last are emanated from the leader tip during the negative corona streamer burst finishing each step-formation process. The only thing needed for the space stem precursor formation is the increased level of streamer heads spatiotemporal appearance frequency inside the very small area of space, which scale is of the order of a few millimeters. One important conclusion derived from this study is that the relatively strong electric field strength, overabundance of negative charge, and increased level of both reduced electric field and detachment frequency, which accompany ionization center formation, facilitate survival and growth of positive streamers initiated from a space stem precursor. The model is applied to specify the range of conditions, under which space stem precursor genesis is possible, and to analyze times of its formation at the range of altitudes of 0-12 km.</p><p>This work was supported by the Russian Science Foundation (project 19-17-00183).</p>


2013 ◽  
Vol 353-356 ◽  
pp. 1287-1292
Author(s):  
Jiang Miao Zhu ◽  
Zhi Xin Li ◽  
Ying Wang

Simulated electric field distribution in concrete by using of ANSYS finite element analysis software, researched influences of some factors on electric field strength and electric potential in concrete. Which include resistivity of cement soil and its electric field strength are inversely proportional and the electric potential distribution is less affected by resistivity changes, applied voltage is proportional to electric field strength and potential, the more the number of cathode induces the greater and uniform of the strength, electric field distribution within cement soil becomes sparse and its values are relatively smaller with the anode spacing increasing, electric field strength of cement-soil is more intensive and its distribution is more uniform and also its values is relatively larger with the decreasing of cathode spacing.


1998 ◽  
Vol 507 ◽  
Author(s):  
Xinhua Geng ◽  
Lei Wu ◽  
Kent Price ◽  
Xunming Deng ◽  
Qi Wang ◽  
...  

ABSTRACTBy using the transient-null-current method, we have measured the internal electric field profiles Ei(x) near the p/i interface for two groups of solar cells: (a) a-Si:H p-i-n solar cells with varied i-layer thicknesses, and (b) a-SiGe:H cells with varied Ge content. When using an exponential function of Ei(x) to fit the experimental results, we obtained the field strength at the p/i interface E0, the screening length Lo, and the density of defect states Nd in the i-layer. The thinner the i-layer, the stronger the field strength obtained. For i-layer thickness increasing from 0.1 to 0.5 μm, the field strength E0 decreases from 1.15×105 to 2.0×104 V/cm; Lo decreases from 0.89 to 0.14 μm; and Nd is 3-4×1016 (cm3eV)−1. For the a-SiGe:H cells, as the Ge content increases from 40 to 55 %, E0 increases from 9.3×104 to 1.2×105 V/cm. The correlation of the internal electric field parameters with the cell‘s performance is discussed.


Sign in / Sign up

Export Citation Format

Share Document