scholarly journals EFFECT OF LOWER ETHANOL GASOLINE BLENDS ON PERFORMANCE AND EMISSION CHARACTERISTICS OF THE SINGLE CYLINDER SI ENGINE

Author(s):  
V. S. KUMBHAR ◽  
D. G. MALI ◽  
P. H. PANDHARE ◽  
R. M. MANE

Alcohols, basically ethanol is considered as a leading alternative fuel for automotive application because of its ability to reduce the air pollution and cost of the fuel. This paper investigates the effect of lower ethanol gasoline blends (up to 20% by volume) on performance and emission characteristics of the single cylinder four stroke SI engine. Tests were carried out for power, torque, fuel consumption and brake mean effective pressure, while exhaust emissions were analyzed for CO, CO2, and HC by using different ethanol gasoline blends on volume basis at wide open throttle and variable engine speed from 4000 to 8000 rpm. Results were compared with the pure gasoline. It showed that as the ethanol content increases the power, torque, fuel consumption, brake mean effective pressure and CO2 emission while reduces HC and CO emission.

Author(s):  
Wan Nur Izzati Wan Mahdi ◽  
Ahmad Muhsin Ithnin ◽  
Wira Jazair Yahya ◽  
Muhammad Adib Abdul Rashid ◽  
Muhamad Aliff Zaharim ◽  
...  

The Water-in-Diesel emulsion (W/D emulsion) imposed the benefit of alternative fuel by reducing the main emission problems in the diesel engines such as Particulate Matters (PM) and Nitric Oxides (NOx) emissions. However, the main issue of W/D emulsion was dependency on surfactant which creates a huge barrier to commercialize this alternative fuel. Therefore, a new concept namely as the Real-Time Non-Surfactant Non-Emulsification System (RTES) was introduced to eliminate the surfactant in W/D emulsion. However, the effect of the electrical load of RTES operation in diesel engine vehicles is still unknown, especially on fuel consumption. Hence, this paper focussed on the effect of electrical load on the emulsification methods of inline mixing system RTES produced by the static mixer and ultrasonic on fuel consumption and emission characteristics. There are two different methods of emulsification made motor and static mixer (EMS) and motor, ultrasonic and static mixer (EMUS) from the RTES were tested of the light-duty lorry under the engine speed of 2200rpm. It is found that the electrical load from the operation of RTES increased the fuel consumption by 1.0% compared to the B10 fuel but reduced by 1.5% when the EMS emulsion fuel was applied. The EMS and EMUS emulsion exhibit the same pattern of NOx reduction by 7% However, EMS and EMUS increased by 20% and 16.5% for CO emission and 16.9% and 9.7% for HC emission respectively compared to B10 fuel. Overall, the electrical load in the RTES operation slightly consumed fuel consumption but the introduction of the static mixer in the RTES system had successfully be applied without deteriorated the benefit of emulsion fuel.


Author(s):  
M. Anilkumar ◽  
K. Prahladarao

Energy utilization from renewable sources plays a vital role to meet the demands of theclean environment. Commercialization of biodiesel is comparatively less than the otheralternative sources due to its suitability and yield. In this paper, it is focused on performance and emission characteristics of cotton seed and hexanol oil biodiesel and in blended withcerium oxide as an additive. The blending proportion was made as B10, B15, B20, and100% Diesel. The testing was performed in Single cylinder four stroke diesel engine. The Performance characteristics were obtained in between the brake power withspecific fuel consumption and emission characteristics such as HC CO and NOXand other gases. It was observed that the combination of B15 proportion with CeO2 blendproduces effect results with other blends in specific fuel consumption and reduced emissionbehavior.


Author(s):  
Teja Gonguntla ◽  
Robert Raine ◽  
Leigh Ramsey ◽  
Thomas Houlihan

The objective of this project was to develop both engine performance and emission profiles for two test fuels — a 6% water-in-diesel oil emulsion (DOE-6) fuel and a neat diesel (D100) fuel. The testing was performed on a single cylinder, direct-injection, water-cooled diesel engine coupled to an eddy current dynamometer. Output parameters of the engine were used to calculate Brake Specific Fuel Consumption (BSFC) and Engine Efficiency (η) for each test fuel. DOE-6 fuels generated a 24% reduction in NOX and a 42% reduction in Carbon Monoxide emissions over the tested operating conditions. DOE-6 fuels presented higher ignition delays — between 1°-4°, yielded 1%–12% lower peak cylinder pressures and produced up to 5.5% lower exhaust temperatures. Brake Specific Fuel consumption increased by 6.6% for the DOE-6 fuels as compared to the D100 fuels. This project is the first research done by a New Zealand academic institution on water-in-diesel emulsion fuels.


Author(s):  
V. Anandram ◽  
S. Ramakrishnan ◽  
J. Karthick ◽  
S. Saravanan ◽  
G. LakshmiNarayanaRao

In the present work, the combustion, performance and emission characteristics of sunflower oil, sunflower methyl ester and its blends were studied and compared with diesel by employing them as fuel in a single cylinder, direct injection, 4.4 KW, air cooled diesel engine. Emission measurements were carried out using five-gas exhaust gas analyzer and smoke meter. The performance characteristics of Sunflower oil, Sunflower methyl ester and its blends were comparable with those of diesel. The components of exhaust such as HC, CO, NOx and soot concentration of the fuels were measured and presented as a function of load and it was observed that the blends had similar performance and emission characteristics as those of diesel. NOx emissions of sunflower oil methyl ester were slightly higher than that of diesel but that of sunflower oil was slightly lower than that of diesel. With respect to the combustion characteristics it was found that the biofuels have lower ignition delay than diesel. The heat release rate was very high for diesel than for the biofuel.


Sign in / Sign up

Export Citation Format

Share Document