Enzyme Biosensor for Determination of Glucose in Honey Bee

Author(s):  
Antonia Pandelova ◽  
Dimitar Dimitrov ◽  
Nikolay Stoyanov
Keyword(s):  
2011 ◽  
Vol 6 ◽  
pp. ACI.S7346 ◽  
Author(s):  
Ani Mulyasuryani ◽  
Arie Srihardiastutie

A conductimetric enzyme biosensor for uric acid detection has been developed. The uricase, as enzyme, is isolated from Candida utilis and immobilized on a nata de coco membrane-Pt electrode. The biosensor demonstrates a linear response to urate over the concentration range 1-6 ppm and has good selectivity properties. The response is affected by the membrane thickness and pH change in the range 7.5-9.5. The response time is three minutes in aqueous solutions and in human serum samples. Application of the biosensor to the determination of uric acid in human serum gave results that compared favourably with those obtained by medical laboratory. The operational stability of the biosensor was not less than three days and the relative error is smaller than 10%.


2015 ◽  
Vol 59 (2) ◽  
pp. 127-133 ◽  
Author(s):  
Krystyna Czekońska ◽  
Bożena Chuda-Mickiewicz

Abstract The effectiveness of two methods of collecting semen from honeybee Apis mellifera drones was compared, and the reasons for problems with ejaculating semen were analysed. Among 275 drones, 100 were stimulated to release semen using a manual method, 100 with the use of chloroform, and from 75 drones the reproductive organs were dissected for analysis and evaluation. It was found that the principal causes of problems that drones had with ejaculating their semen were anatomical changes or a delay in the development of the mucus glands. It was also found that the method employing chloroform was less efficient in the first phase of eversion of the endophallus, compared with the manual method. The method with the use of chloroform allows the determination of the proportion of drones, which do not evert the endophallus because of poor or delayed development of mucus glands, as well as the proportion of drones which evert the organ, but do not ejaculate semen because of the absence of semen in the seminal vesicles.


2016 ◽  
Vol 13 (2) ◽  
pp. 447-457 ◽  
Author(s):  
Baghdad Science Journal

High-performance liquid chromatographic methods are used for the determination of water-soluble vitamins with UV-Vis. Detector. A reversed-phase high-performance liquid chromatographic has been developed for determination of water-soluble vitamins. Identification of compounds was achieved by comparing their retention times and UV spectra with those of standards solution. Separation was performed on a C18 column, using an isocratic 30% (v/v) acetonitril in dionozed water as mobile phase at pH 3.5 and flow rate 1.0m/min. The method provides low detection and quantification limits, good linearity in a large concentration interval and good precision. The detection limits ranged from 0.01 to 0.025µg/ml. The accuracy of the method was tested by measuring average recovery values ranged between 94% - 101 %. For standerd solution, and 93%-99% of honey bee samples.


2021 ◽  
Vol 45 (4) ◽  
pp. 463-474
Author(s):  
Mustafa KÖSOĞLU ◽  
Rahşan İVGİN TUNCA ◽  
Neslihan ÖZSOY ◽  
Yahya Tuncay TUNA ◽  
Erkan TOPAL ◽  
...  

1960 ◽  
Vol 53 (6) ◽  
pp. 841-843 ◽  
Author(s):  
A. F. Novak ◽  
M. S. Blum ◽  
S. Taber ◽  
J. A. Liuzzo

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1878
Author(s):  
Mauro Tomassetti ◽  
Riccardo Pezzilli ◽  
Giuseppe Prestopino ◽  
Francesco Di Biagio ◽  
Corrado Di Natale ◽  
...  

A new catalase amperometric biosensor for hydroperoxides detection has been built as part of research aimed at the development of biosensors based on layered double hydroxides (LDH) used as support for enzyme immobilization. The fabricated device differs from those developed so far, usually based on an LDH enzyme nanocomposite adsorbed on a glassy carbon (GC) electrode and cross-linked by glutaraldehyde, since it is based on an amperometric gas diffusion electrode (Clark type) instead of a GC electrode. The new biosensor, which still uses LDH synthesized by us and catalase enzyme, is robust and compact, shows a lower LOD (limit of detection) value and a linearity range shifted at lower concentrations than direct amperometric GC biosensor, but above all, it is not affected by turbidity or emulsions, or by the presence of possible soluble species, which are reduced to the cathode at the same redox potential. This made it possible to carry out accurate and efficient determination of H2O2 even in complex or cloudy real matrices, also containing very low concentrations of hydrogen peroxide, such as milk and cosmetic products, i.e., matrices that would have been impossible to analyze otherwise, using conventional biosensors based on a GC–LDH enzyme. An inaccuracy ≤7.7% for cosmetic samples and ≤8.0% for milk samples and a precision between 0.7 and 1.5 (as RSD%), according to cosmetic or milk samples analyzed, were achieved.


2018 ◽  
Vol 57 (5) ◽  
pp. 605-610 ◽  
Author(s):  
Enresto Ángel-Beamonte ◽  
Pablo Martín-Ramos ◽  
Pilar Santolaria ◽  
Ester Sales ◽  
Javier Abizanda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document