scholarly journals Sclerotiorin: a Novel Azaphilone with Demonstrated Membrane Targeting and DNA Binding Activity against Methicillin-Resistant Staphylococcus aureus

2020 ◽  
Vol 48 (4) ◽  
pp. 429-438
Author(s):  
Chakradhar Dasagrandhi ◽  
Anup Pandith ◽  
Khalid Imran
2014 ◽  
Vol 3 (2) ◽  
pp. 247-256 ◽  
Author(s):  
Inês R. Grilo ◽  
Ana Madalena Ludovice ◽  
Alexander Tomasz ◽  
Hermínia Lencastre ◽  
Rita G. Sobral

2001 ◽  
Vol 183 (10) ◽  
pp. 3016-3024 ◽  
Author(s):  
Frank S. Kaczmarek ◽  
Richard P. Zaniewski ◽  
Thomas D. Gootz ◽  
Dennis E. Danley ◽  
Mahmoud N. Mansour ◽  
...  

ABSTRACT A Staphylococcus aureus mutant conditionally defective in DNA ligase was identified by isolation of complementing plasmid clones that encode the S. aureus ligA gene. Orthologues of the putative S. aureus NAD+-dependent DNA ligase could be identified in the genomes of Bacillus stearothermophilus and other gram-positive bacteria and confirmed the presence of four conserved amino acid motifs, including motif I, KXDG with lysine 112, which is believed to be the proposed site of adenylation. DNA sequence comparison of the ligA genes from wild type and temperature-sensitive S. aureus strain NT64 identified a single base alteration that is predicted to result in the amino acid substitution E46G. The S. aureus ligA gene was cloned and overexpressed in Escherichia coli, and the enzyme was purified to near homogeneity. NAD+-dependent DNA ligase activity was demonstrated with the purified enzyme by measuring ligation of 32P-labeled 30-mer and 29-mer oligonucleotides annealed to a complementary strand of DNA. Limited proteolysis of purified S. aureus DNA ligase by thermolysin produced products with apparent molecular masses of 40, 22, and 21 kDa. The fragments were purified and characterized by N-terminal sequencing and mass analysis. The N-terminal fragment (40 kDa) was found to be fully adenylated. A fragment from residues 1 to 315 was expressed as a His-tagged fusion in E. coli and purified for functional analysis. Following deadenylation with nicotinamide mononucleotide, the purified fragment could self-adenylate but lacked detectable DNA binding activity. The 21- and 22-kDa C-terminal fragments, which lacked the last 76 amino acids of the DNA ligase, had no adenylation activity or DNA binding activity. The intact 30-kDa C terminus of the S. aureus LigA protein expressed in E. coli did demonstrate DNA binding activity. These observations suggest that, as in the case with the NAD+-dependent DNA ligase fromB. stearothermophilus, two independent functional domains exist in S. aureus DNA ligase, consisting of separate adenylation and DNA binding activities. They also demonstrate a role for the extreme C terminus of the ligase in DNA binding. As there is much evidence to suggest that DNA ligase is essential for bacterial survival, its discovery in the important human pathogen S. aureus indicates its potential as a broad-spectrum antibacterial target for the identification of novel antibiotics.


Microbiology ◽  
2011 ◽  
Vol 157 (3) ◽  
pp. 677-684 ◽  
Author(s):  
Marianne T. Cohn ◽  
Peter Kjelgaard ◽  
Dorte Frees ◽  
José R. Penadés ◽  
Hanne Ingmer

The SOS response is governed by the transcriptional regulator LexA and is elicited in many bacterial species in response to DNA damaging conditions. Induction of the SOS response is mediated by autocleavage of the LexA repressor resulting in a C-terminal dimerization domain (CTD) and an N-terminal DNA-binding domain (NTD) known to retain some DNA-binding activity. The proteases responsible for degrading the LexA domains have been identified in Escherichia coli as ClpXP and Lon. Here, we show that in the human and animal pathogen Staphylococcus aureus, the ClpXP and ClpCP proteases contribute to degradation of the NTD and to a lesser degree the CTD. In the absence of the proteolytic subunit, ClpP, or one or both of the Clp ATPases, ClpX and ClpC, the LexA domains were stabilized after autocleavage. Production of a stabilized variant of the NTD interfered with mitomycin-mediated induction of sosA expression while leaving lexA unaffected, and also significantly reduced SOS-induced mutagenesis. Our results show that sequential proteolysis of LexA is conserved in S. aureus and that the NTD may differentially regulate a subset of genes in the SOS regulon.


2013 ◽  
Vol 42 (4) ◽  
pp. 2774-2788 ◽  
Author(s):  
Ivan Birukou ◽  
Susan M. Seo ◽  
Bryan D. Schindler ◽  
Glenn W. Kaatz ◽  
Richard G. Brennan

Abstract The multidrug efflux pump MepA is a major contributor to multidrug resistance in Staphylococcus aureus. MepR, a member of the multiple antibiotic resistance regulator (MarR) family, represses mepA and its own gene. Here, we report the structure of a MepR–mepR operator complex. Structural comparison of DNA-bound MepR with ‘induced’ apoMepR reveals the large conformational changes needed to allow the DNA-binding winged helix-turn-helix motifs to interact with the consecutive major and minor grooves of the GTTAG signature sequence. Intriguingly, MepR makes no hydrogen bonds to major groove nucleobases. Rather, recognition-helix residues Thr60, Gly61, Pro62 and Thr63 make sequence-specifying van der Waals contacts with the TTAG bases. Removing these contacts dramatically affects MepR–DNA binding activity. The wings insert into the flanking minor grooves, whereby residue Arg87, buttressed by Asp85, interacts with the O2 of T4 and O4′ ribosyl oxygens of A23 and T4. Mutating Asp85 and Arg87, both conserved throughout the MarR family, markedly affects MepR repressor activity. The His14′:Arg59 and Arg10′:His35:Phe108 interaction networks stabilize the DNA-binding conformation of MepR thereby contributing significantly to its high affinity binding. A structure-guided model of the MepR–mepA operator complex suggests that MepR dimers do not interact directly and cooperative binding is likely achieved by DNA-mediated allosteric effects.


Sign in / Sign up

Export Citation Format

Share Document