scholarly journals Effect of Unified Power Quality Conditioner on Voltage and Current Waveforms

Author(s):  
Muhammad Ossama MAHMOUD ◽  
Wael MAMDOUH ◽  
Hamdy KHALIL

Power quality improvement faces different and significant problems due to voltage instability and the wide use of electronic power devices. To overcome these different power quality problems, an active power filter is used. The active power filter, in general, has 4 main categories- shunt, series, unified power quality conditioner, and hybrid active power filter. The shunt active power filter is usually used to mitigate source current harmonics and compensate reactive power for power factor correction. The series active power filter is usually used to mitigate voltage problems (sags, swells, transients, dips, distortions, harmonics, etc.). The unified power quality conditioner is a combination of the shunt active power filter and the series active power filter; it is used to mitigate all voltage and current problems, compensate voltage, current system harmonics, and reactive power compensation, and mitigate voltage dips, voltage sags, voltage swells, and voltage phase shift. In this paper, the 3-phase 3-wire unified power quality conditioner is utilized to mitigate all power system problems (voltages and currents) and discuss the effect of the shunt and series active power filter separately on source voltage and source current waveforms. This case study shows that the source voltage distortion can be mitigated by using the series active power filter alone, but the source current distortion cannot be mitigated without using both the series and shunt active power filter. The source current harmonic problem mainly exists due to 1) distorted voltage sources, and 2) non-linear loads. Therefore, the unified power quality conditioner must be used to mitigate source current distortions in the case of the distorted voltage source, to comply with the standard limits IEEE 519, IEC 555, and IEC 61000. HIGHLIGHTS The UPQC is used to mitigate all voltage and current problems and improve all power system quality The SEAPF eliminates all voltage problems The SHAPF has no effect on source voltage The SHAPF eliminates source current harmonic distortion GRAPHICAL ABSTRACT

Author(s):  
Siddhant Tiwari ◽  
◽  
Balram Yadav ◽  
Indrajeet Kumar ◽  
◽  
...  

This thesis addresses the Unified Power Quality Conditioner (UPQC) which is a major custom power solutions capable for load balancing, power factor-correction, voltage regulation, voltage and current harmonics mitigation in a three-phase three-wire distribution system for different combinations of linear, non-linear and dynamic loads. The unit template technique (UTT) is used to get the reference signals for series active power filter and shunt active power filter which utilizes two closed loop PI controllers. The design of three- phase three-wire UPQC includes the design of shunt controller (SHUC) and series controller (SERC).


With the modernization of loads using power electronic components and dynamic loads diminishes the power quality of the system. Integration of renewable energy sources is the best solution to meet the additional power demand and also to improve the power quality problems like low power factor and harmonics distortions. In this paper, an adaptive dynamic shunt active power filter is proposed to alleviate the power quality problems like current harmonic distortions and reactive power compensation. The proposed control strategy performance is examined under different source voltage conditions under IEEE standards. Photovoltaic system is integrated at DC link of the Adaptive dynamic shunt active power filter. Proposed system performance is studied by using MATLAB/SIMULINK Environment.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1951
Author(s):  
Mihaela Popescu ◽  
Alexandru Bitoleanu ◽  
Mihaita Linca ◽  
Constantin Vlad Suru

This paper presents the use of a three-phase four-wire shunt active power filter to improve the power quality in the Department of Industrial Electronics of a large enterprise from Romania. The specificity is given by the predominant existence of single-phase consumers (such as personal computers, printers, lighting and AC equipment). In order to identify the power quality indicators and ways to improve them, an A-class analyzer was used to record the electrical quantities and energy parameters in the point of common coupling (PCC) with the nonlinear loads for 27 h. The analysis shows that, in order to improve the power quality in PCC, three goals must be achieved: the compensation of the distortion power, the compensation of the reactive power and the compensation of the load unbalance. By using the conceived three-leg shunt active power filter, controlled through the indirect current control method in an original variant, the power quality at the supply side is very much improved. In the proposed control algorithm, the prescribed active current is obtained as a sum of the loss current provided by the DC voltage and the equivalent active current of the unbalanced load. The performance associated with each objective of the compensation is presented and analyzed. The results show that all the power quality indicators meet the specific standards and regulations and prove the validity of the proposed solution.


Author(s):  
P. Thirumoorthi ◽  
Raheni T D

Power system harmonics are a menace to electric power system with disastrous consequence. Due to the presence of non linear load, power quality of the system gets affected.  To overcome this, shunt active power filter have been used near harmonic producing loads or at the point of common coupling to block current harmonics. The shunt active power filter is designed to minimize harmonics in source current and reactive power in the non linear power supplies which are creating harmonics. In this paper, Instantaneous power of p-q theory is employed to generate the reference currents and PI controller is used to control the dc link voltage. In addition to this, Artificial Intelligence (AI) technique is used to minimize the harmonics produced by nonlinear load. The main objective of this paper is to analyze and compare THD of the source current with PI controller and by artificial neural network based back propagation algorithm. The proposed system is designed with MATLAB/SIMULINK environment.


Author(s):  
Muhammad Ossama Mahmoud ◽  
Wael Mamdouh ◽  
Hamdy Khalil

In this paper, three-phase, four-wire shunt active power filter (SAPF) is utilized to mitigate system harmonics of distorted voltage source for unbalanced and nonlinear loads. Basically, the source voltage should be pure sinusoidal waveform to get a good mitigation of source current harmonics. In this under study system, the source voltage is assumed to be harmonic distortion non-sinusoidal voltage source. The phase locked loop (PLL) control circuit is wielded for extracting the fundamental component of the distorted source voltage to use it as an input signal to the SAPF control. Another input signal to the SAPF is the distorted load current. The SAPF control system uses (p-q) theory to calculate the optimum instantaneous current to be injected by the SAPF to mitigate the source current harmonics even the source voltage is harmonic distorted. MATLAB/SIMULINK software package is utilized to simulate the system under study. The effect of SAPF is tested when it’s used with and without the PLL control circuit. The simulation results show that, the THD of source current when using the PLL control circuit is improved to comply with the harmonic limits given in the IEEE 519-1992 and IEC 61000-4-7 standards.


Author(s):  
Yeison Alberto Garcés Gómez ◽  
Nicolás Toro García ◽  
Fredy Edimer Hoyos

<span>In this paper we present a new algorithm to generate the reference signals to control the series and parallel power inverters in an unified power quality conditioner “UPQC” to enhance power quality. The algorithm is based in the instantaneous power tensor formulation which it is obtained by the dyadic product between the instantaneous vectors of voltage and current in n-phase systems. The perfect harmonic cancelation algorithm “PHC” to estimate the current reference in a shunt active power filter was modified to make it hardy to voltage sags through unit vector template generation “UVGT” while from the same algorithm it extracts the voltage reference for series active power filter. The model was validated by mean of simulations in Matlab-Simulink®.</span>


2018 ◽  
Vol 27 (11) ◽  
pp. 1850166 ◽  
Author(s):  
S. Senguttuvan ◽  
M. Vijayakumar

This paper presents a solar photovoltaic (SPV) interfaced shunt active power filter (APF), which is certainly one of the utmost effective custom power devices, which mitigates the long duration current harmonics and compensates the reactive power. The shunt APF consists of the parallel connected voltage source inverter (VSI) and storage capacitor which is connected in the DC link. The compensation ability of the APF is mainly inspired by the control technique which is used to estimate the reference source current signal. Furthermore, the controller chooses the number of devices required and measurement practices; thus, it determines the corresponding costs. The fuzzy logic controller (FLC)-based second order generalized integrator (SOGI) is employed to estimate the reference source current of the shunt APF. The presented control scheme does not require voltage associated information and sensors, because it utilizes the details concerning the VSI and load currents. The shunt APF uses the solar photovoltaic (SPV) system with an auxiliary energy storage unit to deliver the required active power to the electric grid and affords the uninterrupted compensation. The performance analysis has been carried out with different load and voltage conditions through the simulation by using the MATLAB/Simulink. The experimental prototype was developed to confirm the usefulness of the PV integrated shunt APF with FLC-based SOGI control scheme.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 637 ◽  
Author(s):  
Amir A. Imam ◽  
R. Sreerama Kumar ◽  
Yusuf A. Al-Turki

The design of reliable power filters that mitigate current and voltage harmonics to meet the power quality requirements of the utility grid is a major requirement of present-day power systems. In this paper, a detailed systematic approach to design a shunt active power filter (SAPF) for power quality enhancement is discussed. A proportional–integral (PI) controller is adopted to regulate the DC-link voltage. The instantaneous reactive power theory is employed for the reference current’s extraction. Hysteresis current control is used to obtain the gate pulses that control the voltage source inverter (VSI) switches. The detailed SAPF is developed and simulated for balanced nonlinear loads and unbalanced nonlinear loads using MATLAB/Simulink. The simulation results indicate that the proposed filter can minimize the harmonic distortion to a level below that deployed by the Institute of Electrical and Electronics Engineers (IEEE) standards.


Sign in / Sign up

Export Citation Format

Share Document