scholarly journals Unit vector template generator applied to a new control algorithm for an UPQC with instantaneous power tensor formulation, a simulation case study

Author(s):  
Yeison Alberto Garcés Gómez ◽  
Nicolás Toro García ◽  
Fredy Edimer Hoyos

<span>In this paper we present a new algorithm to generate the reference signals to control the series and parallel power inverters in an unified power quality conditioner “UPQC” to enhance power quality. The algorithm is based in the instantaneous power tensor formulation which it is obtained by the dyadic product between the instantaneous vectors of voltage and current in n-phase systems. The perfect harmonic cancelation algorithm “PHC” to estimate the current reference in a shunt active power filter was modified to make it hardy to voltage sags through unit vector template generation “UVGT” while from the same algorithm it extracts the voltage reference for series active power filter. The model was validated by mean of simulations in Matlab-Simulink®.</span>

Author(s):  
Siddhant Tiwari ◽  
◽  
Balram Yadav ◽  
Indrajeet Kumar ◽  
◽  
...  

This thesis addresses the Unified Power Quality Conditioner (UPQC) which is a major custom power solutions capable for load balancing, power factor-correction, voltage regulation, voltage and current harmonics mitigation in a three-phase three-wire distribution system for different combinations of linear, non-linear and dynamic loads. The unit template technique (UTT) is used to get the reference signals for series active power filter and shunt active power filter which utilizes two closed loop PI controllers. The design of three- phase three-wire UPQC includes the design of shunt controller (SHUC) and series controller (SERC).


Author(s):  
Muhammad Ossama MAHMOUD ◽  
Wael MAMDOUH ◽  
Hamdy KHALIL

Power quality improvement faces different and significant problems due to voltage instability and the wide use of electronic power devices. To overcome these different power quality problems, an active power filter is used. The active power filter, in general, has 4 main categories- shunt, series, unified power quality conditioner, and hybrid active power filter. The shunt active power filter is usually used to mitigate source current harmonics and compensate reactive power for power factor correction. The series active power filter is usually used to mitigate voltage problems (sags, swells, transients, dips, distortions, harmonics, etc.). The unified power quality conditioner is a combination of the shunt active power filter and the series active power filter; it is used to mitigate all voltage and current problems, compensate voltage, current system harmonics, and reactive power compensation, and mitigate voltage dips, voltage sags, voltage swells, and voltage phase shift. In this paper, the 3-phase 3-wire unified power quality conditioner is utilized to mitigate all power system problems (voltages and currents) and discuss the effect of the shunt and series active power filter separately on source voltage and source current waveforms. This case study shows that the source voltage distortion can be mitigated by using the series active power filter alone, but the source current distortion cannot be mitigated without using both the series and shunt active power filter. The source current harmonic problem mainly exists due to 1) distorted voltage sources, and 2) non-linear loads. Therefore, the unified power quality conditioner must be used to mitigate source current distortions in the case of the distorted voltage source, to comply with the standard limits IEEE 519, IEC 555, and IEC 61000. HIGHLIGHTS The UPQC is used to mitigate all voltage and current problems and improve all power system quality The SEAPF eliminates all voltage problems The SHAPF has no effect on source voltage The SHAPF eliminates source current harmonic distortion GRAPHICAL ABSTRACT


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1951
Author(s):  
Mihaela Popescu ◽  
Alexandru Bitoleanu ◽  
Mihaita Linca ◽  
Constantin Vlad Suru

This paper presents the use of a three-phase four-wire shunt active power filter to improve the power quality in the Department of Industrial Electronics of a large enterprise from Romania. The specificity is given by the predominant existence of single-phase consumers (such as personal computers, printers, lighting and AC equipment). In order to identify the power quality indicators and ways to improve them, an A-class analyzer was used to record the electrical quantities and energy parameters in the point of common coupling (PCC) with the nonlinear loads for 27 h. The analysis shows that, in order to improve the power quality in PCC, three goals must be achieved: the compensation of the distortion power, the compensation of the reactive power and the compensation of the load unbalance. By using the conceived three-leg shunt active power filter, controlled through the indirect current control method in an original variant, the power quality at the supply side is very much improved. In the proposed control algorithm, the prescribed active current is obtained as a sum of the loss current provided by the DC voltage and the equivalent active current of the unbalanced load. The performance associated with each objective of the compensation is presented and analyzed. The results show that all the power quality indicators meet the specific standards and regulations and prove the validity of the proposed solution.


Sign in / Sign up

Export Citation Format

Share Document