scholarly journals THE UNIFIED POWER QUALITY CONDITIONER: A REVIEW

Author(s):  
Siddhant Tiwari ◽  
◽  
Balram Yadav ◽  
Indrajeet Kumar ◽  
◽  
...  

This thesis addresses the Unified Power Quality Conditioner (UPQC) which is a major custom power solutions capable for load balancing, power factor-correction, voltage regulation, voltage and current harmonics mitigation in a three-phase three-wire distribution system for different combinations of linear, non-linear and dynamic loads. The unit template technique (UTT) is used to get the reference signals for series active power filter and shunt active power filter which utilizes two closed loop PI controllers. The design of three- phase three-wire UPQC includes the design of shunt controller (SHUC) and series controller (SERC).

Author(s):  
Muhammad Ossama MAHMOUD ◽  
Wael MAMDOUH ◽  
Hamdy KHALIL

Power quality improvement faces different and significant problems due to voltage instability and the wide use of electronic power devices. To overcome these different power quality problems, an active power filter is used. The active power filter, in general, has 4 main categories- shunt, series, unified power quality conditioner, and hybrid active power filter. The shunt active power filter is usually used to mitigate source current harmonics and compensate reactive power for power factor correction. The series active power filter is usually used to mitigate voltage problems (sags, swells, transients, dips, distortions, harmonics, etc.). The unified power quality conditioner is a combination of the shunt active power filter and the series active power filter; it is used to mitigate all voltage and current problems, compensate voltage, current system harmonics, and reactive power compensation, and mitigate voltage dips, voltage sags, voltage swells, and voltage phase shift. In this paper, the 3-phase 3-wire unified power quality conditioner is utilized to mitigate all power system problems (voltages and currents) and discuss the effect of the shunt and series active power filter separately on source voltage and source current waveforms. This case study shows that the source voltage distortion can be mitigated by using the series active power filter alone, but the source current distortion cannot be mitigated without using both the series and shunt active power filter. The source current harmonic problem mainly exists due to 1) distorted voltage sources, and 2) non-linear loads. Therefore, the unified power quality conditioner must be used to mitigate source current distortions in the case of the distorted voltage source, to comply with the standard limits IEEE 519, IEC 555, and IEC 61000. HIGHLIGHTS The UPQC is used to mitigate all voltage and current problems and improve all power system quality The SEAPF eliminates all voltage problems The SHAPF has no effect on source voltage The SHAPF eliminates source current harmonic distortion GRAPHICAL ABSTRACT


2007 ◽  
Vol 35 (12) ◽  
pp. 1331-1344 ◽  
Author(s):  
Abdelmadjid Chaoui ◽  
Jean Paul Gaubert ◽  
Fateh Krim ◽  
Gérard Champenois

This paper presents the simulation-based study and results of a three-phase shunt active power filter (SAPF) for power quality improvement. The power quality of the power systems is degraded because of the presence of non-linear loads at the consumer end. The SAPF can reduce the impact of harmonics caused by the non-linear loads. The analyzed SAPF system is modeled and simulated using MATLAB-Simulink workspace. The ultimate goal of this study is to improve the total harmonic distortion of the system as per the standards defined by IEEE-519.


Author(s):  
Yeison Alberto Garcés Gómez ◽  
Nicolás Toro García ◽  
Fredy Edimer Hoyos

<span>In this paper we present a new algorithm to generate the reference signals to control the series and parallel power inverters in an unified power quality conditioner “UPQC” to enhance power quality. The algorithm is based in the instantaneous power tensor formulation which it is obtained by the dyadic product between the instantaneous vectors of voltage and current in n-phase systems. The perfect harmonic cancelation algorithm “PHC” to estimate the current reference in a shunt active power filter was modified to make it hardy to voltage sags through unit vector template generation “UVGT” while from the same algorithm it extracts the voltage reference for series active power filter. The model was validated by mean of simulations in Matlab-Simulink®.</span>


2012 ◽  
Vol 433-440 ◽  
pp. 6731-6736
Author(s):  
Chandrakant L. Bhattar ◽  
Vilas N. Ghate

This paper presents the new control algorithm for three-phase, four-wire distributing system using unified power quality conditioner (UPQC). The UPQC, a combination of series and shunt active filter (AF) with common dc link, is one of the best solution towards the compensation of voltage sag, swell problems and also compensate voltage flicker/imbalance, reactive power, negative sequence current and maintain zero voltage regulation (ZVR) at the point of common coupling (PCC) on distribution system. The series AF is seen by using a three-phase, three leg voltage source inverter (VSI) and the shunt AF is of a three-phase, four leg voltage source inverter (VSI). The proposed model of the UPQC is developed in the MATLAB/SIMULINK environment and the simulation results prove the power quality improvement in the system.


This paper depicts the methodology of improving power quality at load end is connected with renewable source of energy for power generation. The excessive of power physics devices in distribution system has evolved the matter of power quality. Shunt active power filter (SAPF) acts as a current supply and suppresses the harmonics by introducing the same amount of compensating opposite harmonics component along with common coupling. Simulation design of SAPF based on d-q model is implemented using MATLAB/simulink Toolbox. It explores the modelling of a Proportional Integral (PI) and fuzzy logic controller (FLC) based, SAPF for a 3 wire network to compensate current harmonics fed to a nonlinear load. The proposed model can be validated and its robustness will be checked through the simulation results. Simulation results illustrate that the logic based active filter out performs the PI based shunt active filter.


Author(s):  
Annu Govind ◽  
Vijay Kumar Tayal ◽  
prakash Kumar

Adaptive neural network (ANN) topology-based control is proposed in this paper for three phase three wire shunt active power filter (SAPF) application. The proposed controller improves power quality and compensates harmonic components. The system includes a current controlled voltage source inverter (CC-VSI) using three phase insulated gate bipolar transistors (IGBT), a DSP module for generating regulated pulse width modulated (PWM) pulse and reference DC bus. The increase in nonlinear load applications has raised power quality issues. SAPF has emerged as one of the best solutions to improve power quality. Application of ANN in SAPF eliminates the need for unit template generation and the tuning requirement of phase locked loop (PLL), as required in traditional SAPF. The proposed ANN based SAPF can be dynamically regulated for minimum harmonic contamination. The results were obtained and verified in Matlab/ Simulink platform.


Sign in / Sign up

Export Citation Format

Share Document