scholarly journals Finite Element Based Response Surface Methodology to Optimize Segmental Tunnel Lining

2017 ◽  
Vol 7 (2) ◽  
pp. 1504-1514
Author(s):  
A. Rastbood ◽  
Y. Gholipour ◽  
A. Majdi

The main objective of this paper is to optimize the geometrical and engineering characteristics of concrete segments of tunnel lining using Finite Element (FE) based Response Surface Methodology (RSM). Input data for RSM statistical analysis were obtained using FEM. In RSM analysis, thickness (t) and elasticity modulus of concrete segments (E), tunnel height (H), horizontal to vertical stress ratio (K) and position of key segment in tunnel lining ring (θ) were considered as input independent variables. Maximum values of Mises and Tresca stresses and tunnel ring displacement (UMAX) were set as responses. Analysis of variance (ANOVA) was carried out to investigate the influence of each input variable on the responses. Second-order polynomial equations in terms of influencing input variables were obtained for each response. It was found that elasticity modulus and key segment position variables were not included in yield stresses and ring displacement equations, and only tunnel height and stress ratio variables were included in ring displacement equation. Finally optimization analysis of tunnel lining ring was performed. Due to absence of elasticity modulus and key segment position variables in equations, their values were kept to average level and other variables were floated in related ranges. Response parameters were set to minimum. It was concluded that to obtain optimum values for responses, ring thickness and tunnel height must be near to their maximum and minimum values, respectively and ground state must be similar to hydrostatic conditions.

Author(s):  
Abed Saad ◽  
Nour Abdurahman ◽  
Rosli Mohd Yunus

: In this study, the Sany-glass test was used to evaluate the performance of a new surfactant prepared from corn oil as a demulsifier for crude oil emulsions. Central composite design (CCD), based on the response surface methodology (RSM), was used to investigate the effect of four variables, including demulsifier dosage, water content, temperature, and pH, on the efficiency of water removal from the emulsion. As well, analysis of variance was applied to examine the precision of the CCD mathematical model. The results indicate that demulsifier dose and emulsion pH are two significant parameters determining demulsification. The maximum separation efficiency of 96% was attained at an alkaline pH and with 3500 ppm demulsifier. According to the RSM analysis, the optimal values for the input variables are 40% water content, 3500 ppm demulsifier, 60 °C, and pH 8.


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 70
Author(s):  
Jasir Jawad ◽  
Alaa H. Hawari ◽  
Syed Javaid Zaidi

The forward osmosis (FO) process is an emerging technology that has been considered as an alternative to desalination due to its low energy consumption and less severe reversible fouling. Artificial neural networks (ANNs) and response surface methodology (RSM) have become popular for the modeling and optimization of membrane processes. RSM requires the data on a specific experimental design whereas ANN does not. In this work, a combined ANN-RSM approach is presented to predict and optimize the membrane flux for the FO process. The ANN model, developed based on an experimental study, is used to predict the membrane flux for the experimental design in order to create the RSM model for optimization. A Box–Behnken design (BBD) is used to develop a response surface design where the ANN model evaluates the responses. The input variables were osmotic pressure difference, feed solution (FS) velocity, draw solution (DS) velocity, FS temperature, and DS temperature. The R2 obtained for the developed ANN and RSM model are 0.98036 and 0.9408, respectively. The weights of the ANN model and the response surface plots were used to optimize and study the influence of the operating conditions on the membrane flux.


Author(s):  
N. U. Nwogwugwu ◽  
G. O. Abu ◽  
O. Akaranta ◽  
E. C. Chinakwe

Aim: The study employed the Response surface methodology (RSM) model to optimize ethanol production from Calabash (Crescentia cujete) pulp juice using Saccharomyces cerevisiae. Study Design: The Calabash pulp was squeezed with muslin cloth, and vacuum filtered to clear solution before use. The clear juice was tested for reducing sugars using the Dinitrosalicylic acid (DNS) method. Twenty three (23) runs, including 3 controls, of the fermentation was conducted at varying temperatures, pH, and volumes of inoculum.The process parameters (input variables): volumes of inoculum, temperature,and pH were subjected to response surface model, using the Central Composite Design (CCD). Place and Duration of Study: This study was carried out in the Environmental Microbiology Laboratory, University of Port Harcourt for six months. Methodology: Fermentation was done in conical flasks covered with cotton wool and foil in a stationary incubator for four days (96 hours). Active stock culture of Saccharomyces cerevisiae was used, with inoculum developed using Marcfaland’s method. Samples were collected every 24 hours, centrifuged, filtered and analyzed for measurement of the output variables: Reducing sugar, cell density and ethanol concentration. Results: The concentration of reducing sugars from Calabash pulp was 3.2 mg/ml. Results obtained also revealed that the fermentation can take place on a wide range of temperature 25-40°C. The optimal pH range for performance of S. cerevisiae for the fermentation process was pH 5.0-6.5. The optimum volume of inoculum was 5.5%v/v (ie 5.5 ml in 94.5ml juice). The optimized process using the RSM model gave 6.19% v/v bioethanol. Control: The bioethanol yield from Calabash substrate is reasonable considering the concentration of reducing sugars obtained from the juice and the duration of the fermentation.


Sign in / Sign up

Export Citation Format

Share Document