scholarly journals Incorporating Open/Free GIS and GPS Software in Power Transmission Line Routine Work: The Case of Crete and Rhodes

2017 ◽  
Vol 7 (1) ◽  
pp. 1316-1322 ◽  
Author(s):  
D. Pylarinos ◽  
I. Pellas

Geographical Information System (GIS) and Global Positioning System (GPS) software are widely gaining attention in power system planning and operation. Although commercial systems are increasingly being incorporated in power systems applications, they are yet to be fully incorporated in the routine work of utilities (and especially in the work of crews), due to several reasons such as cost, portability, connectivity, performance/speed, infrastructure etc. This paper focuses on incorporating certain open/free GIS and GPS software in routine transmission line work. The case study is the 150kV transmission systems of the Greek islands of Crete and Rhodes which show increased complexity due to certain localized factors such as Greek legislation, the diverse terrain/routes, the segmented design due to the network’s growth over the years (regarding both voltage levels and routes) and the use of different Coordinate Reference Systems (or Geodetic Systems) from the Greek state. The main goals of this work was to incorporate open/free software that provided limitless online access points, offline navigation and a user friendly design that wouldn’t require any additional training, programming etc. The basic scheme described in this paper can be followed to provide similar results in other applications.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Wusheng Liu ◽  
Qian Tan ◽  
Lisheng Liu

The planning and operation of urban buses depend heavily on the time-varying origin-destination (OD) matrix for bus passengers. In most cities, however, only boarding information is recorded, while the alighting information is not available. This paper proposes a novel method to predict the destination of a single bus passenger based on bus smartcard data, metro smartcard data, and global positioning system (GPS) bus data. First, the attractiveness of each bus stop in a bus line was evaluated, considering the attractiveness of nearby metro stations. Then, the exploration and preferential return (EPR) model was employed to estimate the probability of a bus stop to be the alighting stop, i.e., the destination, of a passenger. The estimation result was obtained through a simulation based on the Monte Carlo (MC) algorithm. The effectiveness of our method was proved through a case study on the bus network in Shenzhen, China.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Antonis L. Lazari ◽  
Charalambos A. Charalambous

Considering the investment volume in the electrical energy infrastructure and the increasing awareness for global warming and climate change, this paper aims to deliver an enhanced transmission line losses evaluation method that integrates true environment financial figures. The enormous volume of transmission lines utilized in power systems across the world provides a considerable potential for energy savings by adopting the idea of “energy-efficient transmission lines.” In this paper the total owning cost (TOC) formula with built-in environmental components is used to assess the relative economic benefit of a high-first-cost, low-loss transmission line unit versus one with a lower first cost and higher losses. The proposed methodology is applied on the Cyprus Power System, by incorporating true financial data and system characteristics.


Author(s):  
Santosh B. Kulkarni ◽  
Rajan H. Chile

This paper describes the modeling and simulation library for power systems simulation under SIMULINK environment. The different features of MATLAB Toolboxes used in the analysis of power systems are described. Software introduces SIMULINK environment of MATLAB for implementing user friendly and future expansion. To illustrate the capabilities of SIMULINK simulation tool, a case study based on a test system is presented.


Power system networks are becoming interconnected for the purpose of power delivery to decrease the overall power generation cost. With insufficient control, the power systems become more complicated to function and less secure. The economics of AC power transmission have always forced the planning engineers to transmit as much power as possible through a given transmission line. The smaller and thermally limited lines are crowded in many networks while other higher capacity lines run well below their thermal maximum. When series capacitors are introduced in the higher voltage cables, power may be transferred from the overloaded lines, maximizing the use of the existing line as well as complementing the performance of the power system. In this paper, a three-line meshed power system network with different thermal line limits is considered for the purpose of showing effective utilization of line network for maximum power flow through the intended line with series capacitor compensation. The simulations are performed by using PowerWorld simulator confirms the addition of series capacitor increases the power transfer through the line up to its thermal limit


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1193 ◽  
Author(s):  
Zuzana Bukvisova ◽  
Jaroslava Orsagova ◽  
David Topolanek ◽  
Petr Toman

This work analyses a two-terminal algorithm designed to locate unsymmetrical faults on 110 kV power transmission lines. The algorithm processes synchronized voltage and current data obtained from both ends of the protected transmission line and calculates the distance of the fault. It is based on decomposing the equivalent circuit into the positive-, negative- and zero-sequence components and finding the point where the output voltages of the right and the left side of the transmission line are equal. Compared to the conventional distance relay locator, the accuracy of this method is higher and less influenced by the fault resistance, the parallel-operated line effect and line asymmetry, as discussed in this work. It is, however, very sensitive to the synchronization accuracy. The mathematical model of the power system was created in the PSCAD (Power Systems Computer Aided Design) environment and the computational algorithm was implemented in Mathematica software.


2020 ◽  
Vol 9 (1) ◽  
pp. 2540-2544

In the present time scenario, where we use cables and optical fibers for data transmission along with power transmission, locating the flaws and faults in the transmission lines has become a necessity. Transmission lines are among the essential fragments of power systems. Being exposed to climatic fluctuations makes them the most vulnerable fragment. There may be numerous reasons that originate faults in the lines, such as temperature escalation, lightning strokes, even drizzles and fog because insulated carriers to wear out mechanically. It is indispensable to locate the fault point to restore the power at the earliest. Excellence in power delivery is achieved only if the time enforced in determining the flaw point in the line is limited. Accordingly, an authentic access is essential to figure out the literal location of the fault in the transmission line. This project introduces an accurate and adequate approach for determining the location of the line fault. It illustrates how the use of GSM and GPS along with ARDUINO UNO can relatively reduce the human labor and increase the accuracy whilst downsizing the obligatory time.


2017 ◽  
Vol 8 (4) ◽  
pp. 71-82 ◽  
Author(s):  
Shabbir Uddin ◽  
Karma Sonam Sherpa ◽  
Sandeep Chakravorty ◽  
Amitava Ray

This article contends that planning for power systems is essentially a projection of how the system should grow over a specific period of time, given certain assumptions and judgments about the future load and the size of investment in generating capacity additions, transmission facilities expansion and reinforcements. Transmission line routing is one of the most important strategic decision-making problems for both private and public sectors. The major objective of a utility is to supply demand for power with a good quality of service, through proper planning of the system. This has led to development of methods which can be used to aid the decision-making process for selecting the best alternative. Geographical Information System (GIS)-based electricity transmission system planning strategies are proposed in this article to determine an optimum routing of feeders. Existing and proposed layouts have been drawn using a GIS-based software, Quantum Geographic Information System (Q-GIS). The developed system is based on the routing of transmission lines from Barh thermal power plant situated in Bihar, India.


Sign in / Sign up

Export Citation Format

Share Document