scholarly journals Efficiency Improvement of Permanent Magnet BLDC Motors for Electric Vehicles

2021 ◽  
Vol 11 (5) ◽  
pp. 7615-7618
Author(s):  
D. B. Minh ◽  
V. D. Quoc ◽  
P. N. Huy

A permanent magnet Brushless DC (BLDC) motor has been designed with different rotor configurations based on the arrangement of the permanent magnets. Rotor configurations strongly affect the torque and efficiency performance of permanent magnet electric motors. In this paper, different rotor configurations of the permanent magnet BLDC motor with parallel the Halbach array permanent magnet were compared and evaluated. Many applications of electric drives or air-crafts have recently preferred the surface-mounted permanent magnet design due to its ease of construction and maintenance. The finite element technique has been used for the analysis and comparison of different geometry parameters and rotor magnet configurations to improve efficiency and torque performance. A comprehensive design of a three-phase permanent magnet BLDC 35kW motor is presented and simulations were conducted to evaluate its design. The skewing rotor and Halbach magnet array are applied to the permanent surface-mounted magnet on the BLDC motor for eliminating torque ripples. In order to observe the skewing rotor effect, the rotor lamination layers were skewed with different angles and Halbach sinusoidal arrays. The determined skewing angle, the eliminated theoretically cogging torque, and the back electromotive force harmonics were also analyzed.

Author(s):  
Uldis Brakanskis ◽  
Janis Dirba ◽  
Ludmila Kukjane ◽  
Viesturs Drava

Analysis of a Permanent-Magnet Brushless DC Motor with Fixed DimensionsThe purpose of this paper is to describe the analysis of a permanent-magnet brushless DC motor with fixed outer diameter and active zone length. The influence of air gap, material of permanent magnets and their size on the magnetic flux density of the machine and magnetic flux is analyzed. The work presents the calculations of two programs, the comparison of the results and the most suitable combination of factors that has been found.


2012 ◽  
Vol 59 (9) ◽  
pp. 3553-3560 ◽  
Author(s):  
R. P. Praveen ◽  
M. H. Ravichandran ◽  
V. T. Sadasivan Achari ◽  
V. P. Jagathy Raj ◽  
G. Madhu ◽  
...  

2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Ziad Bou Sakr ◽  
Claude Ziad El Bayeh ◽  
Mohammed Y. Tarnini

This paper presents the simulation of a 3-phase Permanent Magnet Brushless DC (PM BLDC) motor drive. For the studied drive system in this paper, pulse width modulation (PWM) control has been implemented for a 60-degree six-step trapezoidal PM BLDC motor drive. The used processor is Arduino and PIC16F877A, which is a common, flash-able, and low-cost microcontroller unit (MCU) with functions to perform commutation sequence, rotating direction control, speed control and reading Hall sensor signals, and calculating RPM and duty cycle of the PWM outputs signals depending on variable speed. The controlling technique uses sensored type in order to make this design suitable for low-speed and high-speed applications plus control simplicity. In this paper, The application of Proteus Virtual System Modelling (VSM) software as a real-time simulation tool is introduced to model the performance of a 3-phase Permanent Magnet Brushless DC motor drive before hardware implementation. Expected results can be monitored and analyzed throughout the virtual simulation of all components. The usage of Proteus VSM enables shorter product development time, thus reducing development costs for industrial applications.


2013 ◽  
Vol 1 (4) ◽  
pp. 110-117 ◽  
Author(s):  
M.Arun Noyal Doss ◽  
V. Ganapathy ◽  
Subhranshu Sekhar Dash ◽  
V.Marthandan D.Mahesh

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3639
Author(s):  
Rundong Huang ◽  
Chunhua Liu ◽  
Zaixin Song ◽  
Hang Zhao

Electric machines with high torque density are needed in many applications, such as electric vehicles, electric robotics, electric ships, electric aircraft, etc. and they can avoid planetary gears thus reducing manufacturing costs. This paper presents a novel axial-radial flux permanent magnet (ARFPM) machine with high torque density. The proposed ARFPM machine integrates both axial-flux and radial-flux machine topologies in a compact space, which effectively improves the copper utilization of the machine. First, the radial rotor can balance the large axial forces on axial rotors and prevent them from deforming due to the forces. On the other hand, the machine adopts Halbach-array permanent magnets (PMs) on the rotors to suppress air-gap flux density harmonics. Also, the Halbach-array PMs can reduce the total attracted force on axial rotors. The operational principle of the ARFPM machine was investigated and analyzed. Then, 3D finite-element analysis (FEA) was conducted to show the merits of the ARFPM machine. Demonstration results with different parameters are compared to obtain an optimal structure. These indicated that the proposed ARFPM machine with Halbach-array PMs can achieve a more sinusoidal back electromotive force (EMF). In addition, a comparative analysis was conducted for the proposed ARFPM machine. The machine was compared with a conventional axial-flux permanent magnet (AFPM) machine and a radial-flux permanent magnet (RFPM) machine based on the same dimensions. This showed that the proposed ARFPM machine had the highest torque density and relatively small torque ripple.


Sign in / Sign up

Export Citation Format

Share Document