scholarly journals MICELLAR CATALYZED REACTION IN AQUEOUS GLYCEROL SOLUTIONS AND THE INTERNAL PRESSURE OF THE MEDIUM

Author(s):  
Lavinel G. IONESCU ◽  
Vera Lucia Trindade ◽  
Elizabeth Fatima de Souza

The experimental results obtained/or the hydrolysis of p-nitrophenyl diphenyl phosphate (NPDPP) in the presence of sodium hydroxide (NaOH), micelles of cetyltrimethylammonium bromide (CTAB), and an aqueous solution of glycerol were analyzed taking into consideration the internal pressure and the cohesive forces of the reaction medium. The effect of glycerol on mice/le formation and also its influence on the internal pressure of the reaction medium are large enough to affect the micellar catalyzed alkaline hydrolysis of the phosphate ester.

1955 ◽  
Vol 33 (4) ◽  
pp. 705-710 ◽  
Author(s):  
C. W. Helleiner ◽  
G. C. Butler

The rate of alkaline hydrolysis of diphenyl phosphate has been found to be increased by the presence of barium. Similarly, desoxyribonucleate (DNA), which is not hydrolyzed rapidly by hot sodium hydroxide, is hydrolyzed by barium hydroxide. Only a very small proportion of the total phosphorus of either diphenyl phosphate or DNA is converted to inorganic phosphate during this hydrolysis. In addition to hydrolysis of the phosphate ester bonds of DNA, hot alkali also causes the deamination of desoxycytidylic acid residues and probably of the amino-purine nucleotides as well.


1982 ◽  
Vol 35 (7) ◽  
pp. 1357 ◽  
Author(s):  
TJ Broxton

The hydrolysis of 2-acetyloxybenzoic acid in the pH range 6-12 has been studied in the presence of micelles of cetyltrimethylammonium bromide (ctab) and cetylpyridinium chloride (cpc). In the plateau region (pH 6-8) the hydrolysis is inhibited by the presence of micelles, while in the region where the normal BAC2 hydrolysis (pH > 9) occurs the reaction is catalysed by micelles of ctab and cpc. The mechanism of hydrolysis in the plateau region is shown to involve general base catalysis by the adjacent ionized carboxy group both in the presence and absence of micelles. This reaction is inhibited in the presence of micelles because the substrate molecules are solubilized into the micelle and water is less available in this environment than in normal aqueous solution.


Author(s):  
Ik-Hwan Um ◽  
Seungjae Kim

Second-order rate constants (kN) for reactions of p-nitrophenyl acetate (1) and S-p-nitrophenyl thioacetate (2) with OH‒ have been measured spectrophotometrically in DMSO-H2O mixtures of varying compositions at 25.0 ± 0.1 oC. The kN value increases from 11.6 to 32,800 M‒1s‒1 for the reactions of 1 and from 5.90 to 190,000 M‒1s‒1 for those of 2 as the reaction medium changes from H2O to 80 mol % DMSO, indicating that the effect of medium on reactivity is more remarkable for the reactions of 2 than for those of 1. Although 2 possesses a better leaving group than 1, the former is less reactive than the latter by a factor of 2 in H2O. This implies that expulsion of the leaving group is not advanced in the rate-determining transition state (TS), i.e., the reactions of 1 and 2 with OH‒ proceed through a stepwise mechanism, in which expulsion of the leaving group from the addition intermediate occurs after the rate-determining step (RDS). Addition of DMSO to H2O would destabilize OH‒ through electronic repulsion between the anion and the negative-dipole end in DMSO. However, destabilization of OH‒ in the ground state (GS) is not solely responsible for the remarkably enhanced reactivity upon addition of DMSO to the medium. The effect of medium on reactivity has been dissected into the GS and TS contributions through combination of the kinetic data with the transfer enthalpies (ΔΔHtr) from H2O to DMSO-H2O mixtures for OH‒ ion.


1970 ◽  
Vol 24 (2) ◽  
pp. 173-184 ◽  
Author(s):  
Ferdousi Begum ◽  
Md Yousuf A Molla ◽  
M Muhibur Rahman ◽  
Md Abu Bin Hasan Susan

Kinetics of the alkaline hydrolysis of crystal violet (CV) in micelles, reverse micelles and microemulsions of a cationic surfactant, cetyltrimethylammonium bromide (CTAB) was studied at 25 ± 0.1 oC using spectrophotometric method. The rate of alkaline hydrolysis of CV was catalyzed by micellar solutions of CTAB. The pseudo first order rate constant (k') has been found to decrease upon incorporation of 1-butanol to cationic CTAB micelles, which displaces the substrate from the micellar into the aqueous phase. In CTAB/cyclohexane/1-butanol/water system, as the content of 1-butanol increases, specific conductivity and density of the microemulsions and reverse micelles decrease. The change in physical properties also causes change in reaction environment. A change from a micelle-rich (o/w) to a reverse micelle-rich (w/o) condition is apparent for microemulsions and consequently the k' vs. % wt. of 1-butanol profiles show an initial decrease in the k' followed by a gradual increase and finally, to a sharp increase with increasing 1-butanol content. Microemulsions and reverse micelles thus offer the potential to control rate of a reaction by formation of micelles in water phase and reverse micelles in oil phase. DOI: http://dx.doi.org/10.3329/jbcs.v24i2.9706 Journal of Bangladesh Chemical Society, Vol. 24(2), 173-184, 2011


1982 ◽  
Vol 37 (3) ◽  
pp. 380-385 ◽  
Author(s):  
G. N. Schrauzer ◽  
Laura A. Hughes ◽  
Norman Strampach

Abstract Colorless alkylmolybdates(VI) of composition R-MoO3-are generated in aqueous solutions by the alkaline hydrolysis of complexes R-Mo(Bpy)(0)2Br(Bpy = 2,2′-bipyridyl, R = CH3 and higher alkyl). At room temperature in alkaline aqueous solution, the new organometallic derivatives of oxomolybdate(VI) are remarkably resistant against Mo-C bond hydrolysis. Decomposition occurs more rapidly on heating, affording unrearranged alkanes according to the eq.: R-MoO3- + OH-→RH + Mo04=. In acidic solutions, the methylmolybdate(VI) species decomposes with the formation of a mixture of methane and ethane while higher alkylmolybdates carrying hydrogen in the β-position relative to molybdenum undergo Mo-C bond heterolysis by way of β-elimina-tion: R-CH2CH2-MoO3 → Mo+4 (aq) + H+ + R-CH = CH2. The Mo-C bond of alkylmolybdates is resistant to oxidants but is very sensitive to cleavage under reducing conditions. Reductive Mo-C bond cleavage occurs particularly rapidly in the presence of thiols and reduced ferredoxin model compounds. The latter reactions simulate the terminal steps of hydrocarbon producing reactions of nitrogenase with alternate substrates such as CN-, R-CN or R-NC, confirming previous mechanistic conclusions concerning the mechanism of nitrogenase action.


1968 ◽  
Vol 2 (9) ◽  
pp. 234-243 ◽  
Author(s):  
Inga Christenson

The products and kinetics of hydrolysis of the nerve gas antidote bis(4-hydroxyiminomethyl - 1 - pyridinemethyl) ether dichloride (Toxogonin ®) have been investigated. A survey of these studies is given: The hydrolytic reactions were studied in the pH range 1 M hydrochloric acid to 1 M sodium hydroxide at 25, 45, 75 and 85° C. Rate constants were determined in dilute aqueous solution, generally with an initial Toxogonin concentration of 0.01 mg per ml. In addition, a report is given concerning two-year storage of 25 percent (w/v) Toxogonin solutions at pH 2.5, 3.0 and 3.5. The solutions were stored in glass or polypropylene ampuls at 5, 15, 25 and 45°C. At 5 and 15C° decomposition was negligible, at 25 and 45 °C average decomposition was 1.5 percent and 3.3 percent, respectively.


Sign in / Sign up

Export Citation Format

Share Document