scholarly journals Transaction Fraud Detection (Anomaly detection) using Machine Learning

Author(s):  
Prof. Viresh Vanarote ◽  
Omkar Gaykar ◽  
Sarfaraz Saudagar ◽  
Naresh Bulbule ◽  
Tushar Funde

Now a day’s online shopping crazy thing for peoples. As well as many people uses Online transaction for many purposes. Transaction fraud is growing seriously. Therefore, the study on fraud detection is interesting and significant and we can say necessary. An important way of detecting fraud is to extract the behavior profiles (BPs) of users based on their historical transaction records, and then to verify if an incoming transaction is a fraud or not in view of Their BPs. Also we apply SVM, Adaboost, and Neural Network machine learning algorithm to see which one is giving the best result.

2021 ◽  
Author(s):  
Aria Abubakar ◽  
Mandar Kulkarni ◽  
Anisha Kaul

Abstract In the process of deriving the reservoir petrophysical properties of a basin, identifying the pay capability of wells by interpreting various geological formations is key. Currently, this process is facilitated and preceded by well log correlation, which involves petrophysicists and geologists examining multiple raw log measurements for the well in question, indicating geological markers of formation changes and correlating them with those of neighboring wells. As it may seem, this activity of picking markers of a well is performed manually and the process of ‘examining’ may be highly subjective, thus, prone to inconsistencies. In our work, we propose to automate the well correlation workflow by using a Soft- Attention Convolutional Neural Network to predict well markers. The machine learning algorithm is supervised by examples of manual marker picks and their corresponding occurrence in logs such as gamma-ray, resistivity and density. Our experiments have shown that, specifically, the attention mechanism allows the Convolutional Neural Network to look at relevant features or patterns in the log measurements that suggest a change in formation, making the machine learning model highly precise.


2021 ◽  
Author(s):  
jorge cabrera Alvargonzalez ◽  
Ana Larranaga Janeiro ◽  
Sonia Perez ◽  
Javier Martinez Torres ◽  
Lucia martinez lamas ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been and remains one of the major challenges humanity has faced thus far. Over the past few months, large amounts of information have been collected that are only now beginning to be assimilated. In the present work, the existence of residual information in the massive numbers of rRT-PCRs that tested positive out of the almost half a million tests that were performed during the pandemic is investigated. This residual information is believed to be highly related to a pattern in the number of cycles that are necessary to detect positive samples as such. Thus, a database of more than 20,000 positive samples was collected, and two supervised classification algorithms (a support vector machine and a neural network) were trained to temporally locate each sample based solely and exclusively on the number of cycles determined in the rRT-PCR of each individual. Finally, the results obtained from the classification show how the appearance of each wave is coincident with the surge of each of the variants present in the region of Galicia (Spain) during the development of the SARS-CoV-2 pandemic and clearly identified with the classification algorithm.


Author(s):  
Sercan Demirci ◽  
Durmuş Özkan Şahin ◽  
Ibrahim Halil Toprak

Skin cancer, which is one of the most common types of cancer in the world, is a malignant growth seen on the skin due to various reasons. There was an increase in the number of the cases of skin cancer nearly 200% between 2004-2009. Since the ozone layer is depleting, harmful rays reflected from the sun cannot be filtered. In this case, the likelihood of skin cancer will increase over the years and pose more risks for human beings. Early diagnosis is very significant as in all types of cancers. In this study, a mobile application is developed in order to detect whether the skin spots photographed by using the machine learning technique for early diagnosis have a suspicion of skin cancer. Thus, an auxiliary decision support system is developed that can be used both by the clinicians and individuals. For cases that are predicted to have a risk higher than a certain rate by the machine learning algorithm, early diagnosis could be initiated for the patients by consulting a physician when the case is considered to have a higher risk by machine learning algorithm.


Author(s):  
Amirata Ghorbani ◽  
Abubakar Abid ◽  
James Zou

In order for machine learning to be trusted in many applications, it is critical to be able to reliably explain why the machine learning algorithm makes certain predictions. For this reason, a variety of methods have been developed recently to interpret neural network predictions by providing, for example, feature importance maps. For both scientific robustness and security reasons, it is important to know to what extent can the interpretations be altered by small systematic perturbations to the input data, which might be generated by adversaries or by measurement biases. In this paper, we demonstrate how to generate adversarial perturbations that produce perceptively indistinguishable inputs that are assigned the same predicted label, yet have very different interpretations. We systematically characterize the robustness of interpretations generated by several widely-used feature importance interpretation methods (feature importance maps, integrated gradients, and DeepLIFT) on ImageNet and CIFAR-10. In all cases, our experiments show that systematic perturbations can lead to dramatically different interpretations without changing the label. We extend these results to show that interpretations based on exemplars (e.g. influence functions) are similarly susceptible to adversarial attack. Our analysis of the geometry of the Hessian matrix gives insight on why robustness is a general challenge to current interpretation approaches.


Since the introduction of Machine Learning in the field of disease analysis and diagnosis, it has been revolutionized the industry by a big margin. And as a result, many frameworks for disease prognostics have been developed. This paperfocuses on the analysis of three different machine learning algorithms – Neural network, Naïve bayes and SVM on dementia. While the paper focuses more on comparison of the three algorithms, we also try to find out about the important features and causes related to dementia prognostication. Dementia is a severe neurological disease which renders a person unable to use memory and logic if not treated at the early stage so a correct implementation of fast machine learning algorithm may increase the chances of successful treatment. Analysis of the three algorithms will provide algorithm pathway to do further research and create a more complex system for disease prognostication.


Sign in / Sign up

Export Citation Format

Share Document