scholarly journals An Evaluation of the Resilient Modulus and Permanent Deformation of Unbound Mixtures of Granular Materials and Rubber Particles from Scrap Tyres to Be Used in Subballast Layers

Author(s):  
Carlos Hidalgo Sgnes

Over the last years rubber from scrap tyres has been reused in different civil works such as road embankments and railway platforms due to its resilient properties, low degradation and vibration attenuation. Unfortunately, this issue is still scarce. For instance, in Spain about 175.000 tonnes of scrap tyres were collected in 2014, of which only 0.6% were reused in civil works. Aiming to contribute to the reutilisation of large quantities of this waste material, this paper focuses on the analysis of unbound mixtures of granular materials with different percentages of rubber particles to be used as subballast layers. Mixtures are tested under cyclic triaxial tests so as to obtain their resilient modulus and evaluate their permanent deformations. It is found that as the rubber content increases, the resilient modulus decreases and the permanent deformation increases. Taking into account the usual loads transmitted to the subballast layer, the optimum rubber content that does not compromise the behaviour of the mixture is set in a range between 2.5% and 5% in terms of weight.DOI: http://dx.doi.org/10.4995/CIT2016.2016.4231

2016 ◽  
Vol 66 (324) ◽  
pp. 105 ◽  
Author(s):  
C. Hidalgo-Signes ◽  
P. Martínez-Fernández ◽  
J. Garzón-Roca ◽  
R. Insa-Franco

Scrap tyres are a problematic waste material. As a method for recycling large quantities of rubber from scrap tyres, this paper analyses the use of unbound granular mixtures with varying percentages of rubber particles as sub-ballast in railway lines. Bearing capacity for such mixtures is studied in laboratory and field tests using static and dynamic plate load tests, as well as cyclic triaxial tests. It is found that adding rubber increases permanent and resilient strain and that none of the mixtures suffer plastic creep after 2.5 million cycles. Considering the usual bearing capacity requirements, the optimum rubber content is 2.5% (by weight). This percentage increases resistance to degradation while ensuring sufficient bearing capacity.


2009 ◽  
pp. 288-288-15 ◽  
Author(s):  
F Tatsuoka ◽  
S Teachavorasinskun ◽  
J Dong ◽  
Y Kohata ◽  
T Sato

2012 ◽  
Vol 165 (2) ◽  
pp. 139-150 ◽  
Author(s):  
Rosa P. Conceição Luzia ◽  
Luís G. de Picado Santos ◽  
José M. Coelho das Neves ◽  
Dinis Correia Gardete

2016 ◽  
Vol 18 ◽  
pp. 384-391 ◽  
Author(s):  
Carlos Hidalgo Signes ◽  
Pablo Martínez Fernández ◽  
Julio Garzón-Roca ◽  
María Elvira Garrido de la Torre ◽  
Ricardo Insa Franco

2021 ◽  
Vol 147 ◽  
pp. 106779
Author(s):  
Zhehao Zhu ◽  
Feng Zhang ◽  
Qingyun Peng ◽  
Jean-Claude Dupla ◽  
Jean Canou ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
A. Patel ◽  
M. P. Kulkarni ◽  
S. D. Gumaste ◽  
P. P. Bartake ◽  
K. V. K. Rao ◽  
...  

Resilient modulus, , is an important parameter for designing pavements. However, its determination by resorting to cyclic triaxial tests is tedious and time consuming. Moreover, empirical relationships, correlating to various other material properties (namely, California Bearing Ratio, CBR; Limerock Bearing Ratio, LBR; R-value and the Soil Support Value, SSV), give vast variation in the estimated results. With this in view, an electronic circuitry, which employs bender and extender elements (i.e., piezo-ceramic elements), was developed. Details of the circuitry and the testing methodology adopted for this purpose are presented in this paper. This methodology helps in determining the resilient modulus of the material quite precisely. Further, it is believed that this methodology would be quite useful to engineers and technologists for conducting quality check of the pavements, quite rapidly and easily.


Sign in / Sign up

Export Citation Format

Share Document