Comparison of Shaking Table Test Results and Finite Element Seismic Analysis Results of Shear Wall Structures

2021 ◽  
Vol 25 (3) ◽  
pp. 137-144
2013 ◽  
Vol 405-408 ◽  
pp. 795-798
Author(s):  
Wen Long Lu ◽  
Chao Yong Shen

A new kind of RC frame-shear wall structures with partial columns sliding at upper ends is proposed in this paper. A shaking table test of this new kind of structure model (Model B) and a conventional frame shear-wall structure Model (Model A) were carried out, and the plan layout and the member size of the two models are nearly identical. The two models are 3-story and 2-bay by 2-bay, and the second story of either structure is weak story. The test results showed that: (1) under the same intense earthquake, the damage of Model B is slighter than that of Model A; and (2) under the same intense earthquake, the interstory drift angle, the acceleration and the shear force of weak story of Model B are reduced remarkably in comparison to Model A.


Author(s):  
Jim Xu ◽  
Jinsuo Nie ◽  
Charles Hofmayer ◽  
Syed Ali

This paper describes a finite element analysis to predict the JNES/NUPEC cyclic and shaking table RC shear wall test data, as part of a collaborative agreement between the U.S. NRC and JNES to study seismic issues important to the safe operation of commercial nuclear power plant (NPP) structures, systems and components (SSC). The analyses described in this paper were performed using ANACAP reinforced concrete models. The paper describes the ANACAP analysis models and discusses the analysis comparisons with the test data. The ANACAP capability for modeling nonlinear cyclic characteristics of reinforced concrete shear wall structures was confirmed by the close comparisons between the ANACAP analysis results and the JNES/NUPEC cyclic test data. Reasonable agreement between the analysis results and the test data was demonstrated for the hysteresis loops and the shear force orbits, in terms of both the overall shape and the cycle-to-cycle comparisons. The ANACAP simulation analysis of the JNES/NUPEC shaking table test was also performed, which demonstrated that the ANACAP dynamic analysis with concrete material model is able to capture the progressive degrading behavior of the shear wall as indicated from the test data. The ANACAP analysis also predicted the incipient failure of the shear wall, reasonably close to the actual failure declared for the test specimen. In summary, the analyses of the JNES/NUPEC cyclic and shaking table RC shear wall tests presented in this paper have demonstrated the state-of-the-art analysis capability for determining the seismic capacity of RC shear wall structures.


Author(s):  
Kensuke Shiomi ◽  
Yusuke Wada

Recently, much larger earthquakes are considered in the seismic designs of steel-frame structures in Japan. Under these severe ground motions, it is expected that not only the elasto-plastic deformation but also the fracture of the structural members could occur during the earthquakes. And through these situations, the more advanced seismic design or evaluation method which allow the partial destruction inside the structure and prevent from the worst-case scenario like the whole collapse are coming to be demanded. One of the ways to achieve this demand is considering the effects of not only the elasto-plastic deformation but also the fracture of structural members in the seismic analysis. In order for that, it is important to clarify the fracture limit of steel-frame members precisely under the dynamic load. Many static tests to clarify the members’ ultimate behavior were conducted in the past, but the dynamic tests were not well enough. In this research, the vibration tests were conducted to clarify the fracture limit of steel-frame members under the dynamic load. The behavior of the steel-frame members until the fracture was obtained by applying the repeated dynamic bending deformation with the shaking table. Also, The FEM analysis for the shaking table test results was conducted. Through the tests and the analysis study which simulates the test results, the mechanism of the member fracture occurred in the test under the dynamic loads were examined.


2012 ◽  
Vol 170-173 ◽  
pp. 3594-3597
Author(s):  
Hai Tao Wan ◽  
Peng Li

Reinforced concrete (RC) shear wall component is a very important lateral force-resisting member which is widely used in China. Its seismic behavior has a great impact on the seismic performance of the overall structure. Damage of some RC shear wall structures under the earthquake is caused by the damage of shear wall components, So shear wall components are an essential seismic members. However, the test datum are not enough to study the performance of RC shear wall components, Therefore, Finite element simulation of RC shear wall components is performed by software ABAQUS in the paper. Through comparing with the finite element simulation and the test of load - displacement skeleton curve, failure mode and steel bar strain, the result shows that the finite element simulation can more accurately simulate the situation of the test, verifying the finite element simulation is the most important research tool besides test.


2011 ◽  
Vol 261-263 ◽  
pp. 1619-1624
Author(s):  
Pei Zhen Li ◽  
Jing Meng ◽  
Peng Zhao ◽  
Xi Lin Lu

Shaking table test on soil-structure interaction system in harder site condition is presented briefly in this paper. Three-dimensional finite element analysis on shaking table test is carried out using ANSYS program. The surface-to-surface contact element is taken into consideration for the nonlinearity of the state of the interface of the soil-pile and an equivalent linear model is used for soil behavior. By comparing the results of the finite element analysis with the data from shaking table tests, the computational model is validated. Based on the calculation results, the paper gives the seismic responses under the consideration of soil-structure interaction in harder site condition, including acceleration response, contact analysis on soil pile interface and so on.


Author(s):  
C. S. Tsai ◽  
Wen-Shin Chen ◽  
Yung-Chang Lin ◽  
Chi-Lu Lin

In order to prevent a building near a fault from earthquake damage, in this study an advanced base isolation system called the multiple direction optimized-friction pendulum system (Multiple DO-FPS or MDO-FPS) is proposed and examined to address its mechanical behavior through the finite element formulation and evaluate its efficiency in seismic mitigation through a series of shaking table tests. On the basis of the finite element formulation, it is revealed that the natural period, the capacity of the bearing displacement and damping effect for the Multiple Direction Optimized-Friction Pendulum System (Multiple DO-FPS) change continually during earthquakes. Therefore, the MDO-FPS isolator can avoid possibility of resonance of enriched frequencies from ground motions and provide an efficient capacity of the bearing displacement and damping during the earthquakes. Simultaneously, the shaking table test results also illustrate that the Multiple DO-FPS isolator possesses an outstanding seismic mitigation capabilities.


2017 ◽  
Vol 865 ◽  
pp. 306-312
Author(s):  
Zheng Li ◽  
Heng Zhou ◽  
Li Qin

A reduced-scale model of 7-story reinforced concrete shear wall structure is made. Shaking-table test of the model is carried out. Two test conditions are considered. In the first condition, fixed base is used. In another condition, soil structure interaction is considered. According to the experimental results, the dynamic characteristic and seismic performance of shear wall structure is studied. The acceleration time history response of model structure is obtained. Based on the time-history response, the dynamic characteristics of model structure are studied by spectrum analysis. The Finite Element Model of actural structure is established by ANSYS. The dynamic characteristics and seismic performance of actural structure are studied. By comparing the experiment results and numerical analysis results under the fixed-base condition, the rationality of the ANSYS model and numerical analysis method of are verified.


2017 ◽  
Vol 873 ◽  
pp. 259-263
Author(s):  
Hao Zhang ◽  
Zi Hang Zhang ◽  
Yong Qiang Li

The dynamic behavior of the prefabricated and cast in situ concrete shear wall structures subjected to seismic loading is investigated by finite element method. This paper adopted a prefabricated concrete shear wall in a practical engineering. The Precise finite element models of prefabricated and cast in situ concrete shear wall were established respectively by ABAQUS. The damaged plasticity model of concrete and kinematic hardening model of reinforcing steel were used. The top displacement, top acceleration, story drift ratio and base shear forceof prefabricated and cast in situ concrete shear wall under different seismic excitation were compared and analyzed. The earthquake resistant behaviorsof the two kinds of structuresare analyzed and compared. Results show that the performances of PC structure were equal to the cast-in-situ ones.


Sign in / Sign up

Export Citation Format

Share Document