Effect of Repeated Firings on Microtensile Bond Strength of Bi-layered Lithium Disilicate Ceramics (e.max CAD and e.max Press)

2016 ◽  
Vol 17 (7) ◽  
pp. 530-535 ◽  
Author(s):  
Hamid Jalali ◽  
Zeinab Bahrani ◽  
Somayeh Zeighami

ABSTRACT Aim To achieve acceptable contour, color, esthetics, and occlusal relations, the porcelain may be subjected to several firing cycles. This study sought to assess the effect of multiple firing cycles on the microtensile bond strength (MTBS) of lithium disilicate-based ceramics (e.max Press, e.max CAD). Materials and methods IPS e.max computer aided design (CAD) cores were fabricated using CAD/(Computer Aided Manufacturing (CAM)) technology, and IPS e.max Press cores were fabricated using the heat-pressing technique (12 × 12 × 4 mm3). Cores in each group were divided into three subgroups based on the number of firing cycles (three, five, and seven cycles). After porcelain application, the samples were sectioned into microbars and a total of 20 sound microbars in each group were subjected to tensile load in a microtensile tester at a crosshead speed of 1 mm/minute. Microtensile bond strength of the core to the veneering porcelain was analyzed using one-way analysis of variance (ANOVA). Pairwise comparisons were made using the Tukey's test (p < 0.05). Results In the e.max CAD, the mean MTBS values were 22.07 ± 6.63, 34.68 ± 7.07, and 26.05 ± 10.29 MPa following three, five, and seven firing cycles respectively. These values for the e.max Press were 34.46 ± 9.28, 23.09 ± 5.02, and 31.26 ± 12.25 MPa respectively. There was significant difference in bond strength of e.max CAD (p < 0.003) and e.max Press (p < 0.002) based on the number of firing cycles. Conclusion Increasing the number of porcelain firing cycles decreased the bond strength of the core to the veneering porcelain in both ceramics. Clinical significance It is better to decrease the number of firing cycle as much as possible. How to cite this article Jalali H, Bahrani Z, Zeighami S. Effect of Repeated Firings on Microtensile Bond Strength of Bi-layered Lithium Disilicate Ceramics (e.max CAD and e.max Press). J Contemp Dent Pract 2016;17(7):530-535.

2019 ◽  
Vol 45 (4) ◽  
pp. 416-425
Author(s):  
LH Raposo ◽  
PS Borella ◽  
DC Ferraz ◽  
LM Pereira ◽  
MS Prudente ◽  
...  

Clinical Relevance Marginal misfit of monolithic lithium disilicate ceramic crowns obtained from a chairside computer-aided design/computer-aided manufacturing system is affected after successive millings using a single diamond bur set. This fact can be critical for the longevity of indirect restorations. SUMMARY Objectives: This laboratory study aimed to assess the effect of successive crown millings on the marginal misfit of monolithic full-ceramic restorations obtained from two lithium disilicate systems, with a single diamond bur set used for each material in a chairside computer-aided design/computer-aided manufacturing (CAD/CAM) unit. Methods and Materials: Initially, 36 standardized composite resin dies were produced by additive manufacturing from a three-dimensional model of a right mandibular first molar with full-crown preparation generated in CAD software. Individual ceramic crowns were obtained in a chairside CAD/CAM unit (CEREC MC XL) for each composite resin die according to the ceramic system (IPS e.max CAD and Rosetta SM; n=18). Two new diamond burs were used as a set for obtaining the crowns in each experimental group (ceramic systems), and the milling periods were defined after three crown millings (T0-T6), when the diamond bur set of each system was removed for morphologic characterization using scanning electron microscopy (SEM). The marginal misfit of the crowns was assessed through coronal and sagittal micro-tomographic sectioning, in the vertical and horizontal directions of the ceramic crowns seated on their respective resin dies. The collected data were tabulated and subjected to one-way analysis of variance and Tukey's honestly significant difference test (α=0.05). Results: SEM images showed changes in the superficial morphology of the diamond bur sets, with progressive loss of the diamond granules after the successive millings of crowns for both experimental groups. Significant differences were detected in the marginal misfit of the crowns from both ceramic systems at the different milling periods (p&lt;0.001). Conclusions: Diamond burs deteriorated after successive crown millings for both lithium disilicate ceramic systems. The marginal misfit of the crowns obtained increased with the successive use of the CAD/CAM diamond bur set employed for milling each ceramic material. In addition, new milling of full lithium disilicate ceramic crowns can be inappropriate after 11 successive millings for IPS e.max CAD and 12 for Rosetta SM, due to the increased marginal misfit observed under the parameters tested.


2020 ◽  
Vol 19 ◽  
pp. e200537
Author(s):  
Roniel Kapler ◽  
Michelle Villa Oliveira ◽  
Ingrid de Oliveira Bandeira ◽  
Thayara Coelho Metzker ◽  
Adriana Oliveira Carvalho ◽  
...  

Aim: The aim of this study was to evaluate the marginal adaptation of ceramic and composite resin crowns fabricated with computer-aided design and computer-aided manufacturing (CAD/CAM) technology using an intraoral digital scanner. Methods: A human mandibular right second molar was prepared for a ceramic crown. The impressions were made using intraoral scanning device and crowns were milled. Tem crowns were fabricated for each group (n=10): GF – Feldspathic Ceramic (Cerec Blocs, Sirona), GL - Lithium Disilicate Ceramic (IPS e.max CAD, Ivoclar), GG - composite resin (Grandio Blocs, VOCO) and GB - composite resin (Brava Block, FGM). The marginal gap was measured for each specimen at 4 points under magnification with a stereomicroscope. All data were statistically analyzed using one-way ANOVA followed by the Tukey’s test (α=.05). Results: The lowest marginal discrepancy value was observed in GB (60.95 ± 13.64 μm), which was statistically different from the GL (84.22 ± 20.86 μm). However, there was no statistically significant difference between these groups when compared with the other groups, GF (73.26 ±8.19 μm) and GG (68.42 ± 11.31 μm). Conclusion: It can be concluded that the composite resin presented the lowest variance compared to the lithium disilicate glass ceramic, although the marginal gap of all materials tested was within the acceptable clinical limit (120 μm).


2019 ◽  
Vol 9 (9) ◽  
pp. 1798 ◽  
Author(s):  
Son ◽  
Yu ◽  
Yoon ◽  
Lee

This study set out to compare the three-dimensional (3D) trueness of crowns produced from three types of lithium disilicate blocks. The working model was digitized, and single crowns (maxillary left second molar) were designed using computer-aided design (CAD) software. To produce a crown design model (CDM), a crown design file was extracted from the CAD software. In addition, using the CDM file and a milling machine (N = 20), three types of lithium disilicate blocks (e.max CAD, HASS Rosetta, and VITA Suprinity) were processed. To produce a crown scan model (CSM), the inner surface of each fabricated crown was digitized using a touch-probe scanner. In addition, using 3D inspection software, the CDM was partitioned (into marginal, axis, angular, and occlusal regions), the CDM and CSM were overlapped, and a 3D analysis was conducted. A Kruskal–Wallis test (α = 0.05) was conducted with all-segmented teeth with the root mean square (RMS), and they were analyzed using the Mann–Whitney U-test and the Bonferroni correction method as a post hoc test. There was a significant difference in the trueness of the crowns according to the type of lithium disilicate block (p < 0.001). The overall RMS value was at a maximum for e.max (42.9 ± 4.4 µm), followed by HASS (30.1 ± 9.0 µm) and then VITA (27.3 ± 7.9 µm). However, there was no significant difference between HASS and VITA (p = 0.541). There were significant differences in all regions inside the crown (p < 0.001). There was a significantly high trueness in the angular region inside the crown (p < 0.001). A correction could thus be applied in the CAD process, considering the differences in the trueness by the type of lithium disilicate block. In addition, to attain a crown with an excellent fit, it is necessary to provide a larger setting space for the angular region during the CAD process.


Author(s):  
Fariborz Vafaei ◽  
Alireza Izadi ◽  
Samaneh Abbasi ◽  
Maryam Farhadian ◽  
Zahra Bagheri

Objectives: This study aimed to compare the optical properties of Zolid FX, Katana UTML, and lithium disilicate laminate veneers. Materials and Methods: In this in-vitro experimental study, the maxillary left lateral incisor of a phantom received a laminate veneer preparation. An impression was made, and a die was fabricated using dental stone. The die was scanned using a computer-aided design/computer-aided manufacturing scanner. Ten dies were fabricated from each of the A1, A2, and A3 shades of composite resin. Laminate veneers were fabricated using A1 shade of Katana UTML, Zolid FX, and IPS e.max CAD ceramics (n=10) and placed on composite abutments using bleach and white colors of trial insertion paste (TIP). The optical properties were measured at the incisal, middle, and cervical thirds using a spectrophotometer. Data were analyzed using three-way analysis of variance and Tukey’s test. Results: The effect of laminate material on the L*, a*, and b* parameters was significant in all areas (P<0.001), except for the L* parameter in the middle and cervical thirds. All color parameters were affected by TIP color in all three regions in most samples (P<0.05). The effect of composite abutment shade was also significant in most cases (P<0.05). The effect of laminate material, abutment shade, and TIP color on the b* parameter was significant (P<0.001). The L* parameter was almost the same in the two zirconia and lithium disilicate ceramic groups. Conclusion: The composite abutment shade, TIP color, and laminate material should be carefully selected to achieve optimal aesthetics in laminate veneers.


2016 ◽  
Vol 41 (6) ◽  
pp. 666-671 ◽  
Author(s):  
C Gillette ◽  
R Buck ◽  
N DuVall ◽  
S Cushen ◽  
M Wajdowicz ◽  
...  

SUMMARY Objective: To evaluate the significance of reduced axial wall height on retention of adhesively luted, all-ceramic, lithium disilicate premolar computer-aided design/computer-aided manufacturing (CAD/CAM) crowns based on preparations with a near ideal total occlusal convergence of 10°. Methods: Forty-eight recently extracted premolars were randomly divided into four groups (n=12). Each group received all-ceramic CAD/CAM crown preparations featuring axial wall heights of 0, 1, 2, and 3 mm, respectively, all with a 10° total occlusal convergence. Scanned preparations were fitted with lithium disilicate all-ceramic crowns that were luted with a self-etching resin cement. Specimens were tested to failure at a 45° angle to the tooth long axis with failure load converted to megapascals (MPa) based on the measured bonding surface area. Mean data were analyzed using analysis of variance/Tukey's post hoc test (α=0.05). Results: Lithium disilicate crowns adhesively luted on preparations with 0 axial wall height demonstrated significantly less failure resistance compared with the crowns luted on preparations with axial wall heights of 1 to 3 mm. There was no failure stress difference between preparations with 1 to 3 mm axial wall height. Conclusions: Under conditions of this study, adhesively luted lithium disilicate bicuspid crowns with a total occlusal convergence of 10° demonstrated similar failure resistance independent of axial wall height of 1 to 3 mm. This study provides some evidence that adhesion combined with an ideal total occlusal convergence may compensate for reduced axial wall height.


Scanning ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Hong Xin Cai ◽  
Qi Jia ◽  
HaoYu Shi ◽  
Yujie Jiang ◽  
Jingnan Xue ◽  
...  

With the popularization of digital technology and the exposure of traditional technology’s defects, computer-aided design and computer-aided manufacturing (CAD/CAM) has been widely used in the field of dentistry. And the accuracy of the scanning system determines the ultimate accuracy of the prosthesis, which is a very important part of CAD/CAM, so we decided to evaluate the accuracy of the intraoral and extraoral scanners. In this study, we selected the sphere model as the scanning object and obtained the final result through data analysis and 3D fitting. In terms of trueness and precision, the scanner of SHINING was significantly different from that of others; however, there was no significant difference between TRIOS and CEREC. SHINING showed the lowest level of accuracy, with CEREC slightly lower than TRIOS. The sphere model has also been proven to be scanned successfully.


2019 ◽  
Vol 44 (3) ◽  
pp. 262-272
Author(s):  
EM Meda ◽  
RN Rached ◽  
SA Ignácio ◽  
IA Fornazari ◽  
EM Souza

SUMMARY Purpose: The aim of this study was to evaluate the effect of adhesive strategy and time on the microtensile bond strength of a computer-aided design/computer-aided manufacturing (CAD/CAM) composite to dentin. Methods and Materials: Sixty CAD/CAM composite blocks were bonded to human dentin with simplified bonding agents using etch-and-rinse and self-etching approaches and amine-based and amine-free resin cements, with and without the application of a dual-cure activator (DCA; n=10): SBP-ARC (Adper Single Bond Plus + RelyX ARC), SBP-RXU (Adper Single Bond Plus + RelyX Ultimate), SBP-DCA-RXU (Adper Single Bond Plus + DCA + RelyX Ultimate), SBU-ARC (Scotchbond Universal + RelyX ARC), SBU-RXU (Scotchbond Universal + RelyX Ultimate), and SBU-DCA-ARC (Scotchbond Universal + DCA + RelyX ARC). Each specimen was light cured for 40 seconds under load and stored in distilled water at 37°C for seven days. Stick-shaped specimens (1.0 mm2) were obtained. Half of the specimens underwent microtensile bond strength testing, and the other half were subjected to the same tests after six months of storage. Failure mode was determined using an optical microscope (40×). The data were analyzed by a two-way analysis of variance followed by the Games-Howell test and Student t-test (preset alpha of 0.05). Results: After seven days, SBU-RXU presented the highest mean bond strength, statistically different from only SBU-ARC (p&lt;0.05). Most of the groups exhibited a statistically significant reduction in bond strength after 6 months (p&lt;0.05), except SBP-RXU and SBU-ARC (p&gt;0.05). Conclusion: The adhesive strategy, with different associations between adhesive systems and resin cements, as well as the use of a DCA, affected the bond strength of both amine-free and amine-based resin cements to a CAD/CAM composite.


Sign in / Sign up

Export Citation Format

Share Document