Corrosion Resistance of Molybdenum Modified Cr-Ni-Mn Austenitic Stainless Steels

CORROSION ◽  
1963 ◽  
Vol 19 (6) ◽  
pp. 210t-216t ◽  
Author(s):  
F. NAIR ◽  
M. SEMCHYSHEN

Abstract The corrosion resistance of nine Cr-Ni-Mn austenitic and duplex austenitic-ferritic stainless steels, containing up to 5 percent molybdenum, in hot deaerated sulfuric acid and boiling concentrated nitric acid was determined and compared to the behavior of recognized commercial grades. A limited evaluation of mechanical properties was performed. The corrosion resistance of these alloys was affected by molybdenum additions in a manner similar to that observed in Cr-Ni austenitic steels:The ability to tolerate minimal oxidizing environments such as sulfuric acid was markedly improved.The resistance toward strongly oxidizing acidic conditions was reduced. The presence of delta ferrite effected improved resistance in sulfuric acid and materially diminished corrosion resistance in hot nitric acid.

Alloy Digest ◽  
1999 ◽  
Vol 48 (8) ◽  

Abstract ALZ 316 is an austenitic stainless steel with good formability, corrosion resistance, toughness, and mechanical properties. It is the basic grade of the stainless steels, containing 2 to 3% molybdenum. After the 304 series, the molybdenum-containing stainless steels are the most widely used austenitic stainless steels. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-756. Producer or source: ALZ nv.


Alloy Digest ◽  
2016 ◽  
Vol 65 (1) ◽  

Abstract NSSMC-NAR-SN-1, SN-3, and SN-5 are austenitic stainless steels with corrosion resistance to nitric acid. The alloys can be abbreviated as NSSMC-NAR-SN-1: LC-17Cr-14Ni-4Si, NSSMC-NAR-SN-3: LC-11Cr-17Ni-6Si-Zr-Ti, and NSSMC-NAR-SN-5: LC-27Cr- 8Ni-Si-N. This datasheet provides information on composition, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming. Filing Code: SS-1237. Producer or source: Nippon Steel and Sumitomo Metal Corporation.


Author(s):  
Y. Chen ◽  
W-Y. Chen ◽  
A. S. Rao ◽  
Z. Li ◽  
Y. Yang ◽  
...  

Cast austenitic stainless steels (CASS) possess excellent corrosion resistance and mechanical properties and are used alongside with wrought stainless steels (SS) in light water reactors for primary pressure boundaries and reactor core internal components. In contrast to the fully austenitic microstructure of wrought SS, CASS alloys consist of a dual-phase microstructure of delta ferrite and austenite. The delta ferrite is critical for the service performance since it improves the strength, weldability, corrosion resistance, and soundness of CASS alloys. On the other hand, the delta ferrite is also vulnerable to embrittlement when exposed to reactor service temperatures and fast neutron irradiations. In this study, the combined effect of thermal aging and neutron irradiation on the degradation of CASS alloys was investigated. Neutron-irradiated CASS specimens with and without prior thermal aging were tested in simulated light water reactor environments for crack growth rate and fracture toughness. Miniature compact-tension specimens of CF-3 and CF-8 alloys were tested to evaluate the extent of embrittlement resulting from thermal aging and neutron irradiation. The materials used are static casts containing more than 23% delta ferrite. Some specimens were thermally aged at 400 °C for 10,000 hours prior to the neutron irradiation to simulate thermal aging embrittlement. Both the unaged and aged specimens were irradiated at ∼320°C to a low displacement damage dose of 0.08 dpa. Crack growth rate and fracture toughness J-integral resistance curve tests were carried out on the irradiated and unirradiated control samples in simulated light water reactor environments with low corrosion potentials. While no elevated crack propagation rates were detected in the test environments, significant reductions in fracture toughness were observed after either thermal aging or neutron irradiation. The loss of fracture toughness due to neutron irradiation seemed more evident in the samples without prior thermal aging. Transmission electron microscope (TEM) examination was carried out on the thermally aged and neutron irradiated specimens. The result showed that both neutron irradiation and thermal aging can induce significant changes in the delta ferrite. A high density of G-phase precipitates was observed with TEM in the thermally aged specimens, consistent with previous results. Similar precipitate microstructures were also observed in the neutron-irradiated specimens with or without prior thermal aging. A more extensive precipitate microstructure can be seen in the samples subjected to both thermal aging and neutron irradiation. The similar precipitate microstructures resulting from thermal aging and neutron irradiation are consistent with the fracture toughness results, suggesting a common microstructural origin of the observed embrittlement after thermal aging and neutron irradiation.


Alloy Digest ◽  
2000 ◽  
Vol 49 (9) ◽  

Abstract Armco Type 430 is one of the most widely used of the “nonhardenable” ferritic stainless steels. It combines good corrosion resistance and heat and oxidation resistance up to 816 deg C (1500 deg F) with good mechanical properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-803. Producer or source: AK Steel Inc.


Alloy Digest ◽  
2002 ◽  
Vol 51 (1) ◽  

Abstract Carlson alloy 926 Mo is a superaustenitic 6% Mo stainless steel that resists highly corrosive environments and has excellent chloride pitting, crevice, and stress-corrosion cracking resistance. It can be utilized where the performance of conventional austenitic stainless steels is bor-derline, or as a cost-effective substitute for nickel alloys. The higher mechanical properties that allow designs with thinner sections than con-ventional stainless steels are highly desired for oil platforms. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, machining, and joining. Filing Code: SS-842. Producer or source: G.O. Carlson Inc., Electralloy.


Alloy Digest ◽  
2010 ◽  
Vol 59 (6) ◽  

Abstract ZECOR ALLOY (UNS S38815) was developed as a lower cost alternative to other austenitic stainless steels for use in environments containing concentrated sulfuric acid. The alloy has the leanest alloying element content of any of the high silicon austenitic stainless steels designed for concentrated sulfuric acid service. In addition to its lower cost, the composition of ZeCor alloy is balanced to provide enhanced weldability. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance as well as joining. Filing Code: SS-1067. Producer or source: MECS Inc.


2005 ◽  
Vol 486-487 ◽  
pp. 428-431 ◽  
Author(s):  
H.C. Kim ◽  
Je Hyun Lee ◽  
Y.G. Heon ◽  
Chang Yong Jo ◽  
Jae Won Kim ◽  
...  

Al addition is known to enhance corrosion resistance and high temperature properties in ferritic and austenitic stainless steels. Due to the addition of Al, formation and characteristic of nitride were studied in Al added 18Cr stainless steels. The phase diagram and segregation were estimated with addition of Al in 18Cr stainless steels by the Thermo-calc program. Formation behavior of the AlN phase was studied by observing the solid/liquid interface through directional solidification and the phase characterization was performed by XRD in the extracted precipitates from the matrix. It was confirmed that the AlN phase formed at the cell boundary from the liquid in 3 and 5 wt.% Al added 18Cr stainless steels.


CORROSION ◽  
1976 ◽  
Vol 32 (6) ◽  
pp. 229-238 ◽  
Author(s):  
CHRISTOPHER HAHIN ◽  
ROBERT M. STOSS ◽  
BRUCE H. NELSON ◽  
PHILIP J. REUCROFT

Sign in / Sign up

Export Citation Format

Share Document