Biofilm Effect on the Cathodic and Anodic Processes on Stainless Steel in Seawater Near the Corrosion Potential: Part 1—Corrosion Potential

CORROSION ◽  
2001 ◽  
Vol 57 (8) ◽  
pp. 680-692 ◽  
Author(s):  
G. Salvago ◽  
L. Magagnin
1999 ◽  
Vol 23 (1) ◽  
pp. 38-39
Author(s):  
N. Bellakhal ◽  
K. Draou ◽  
J. L. Brisset

Exposure of a 304 stainless steel sample to an inductively coupled low pressure radio frequency (RF) nitrogen plasma leads to the formation of a nitriding layer. The protective properties of this layer are investigated by electrochemical methods. The corrosion potential of the steel in an aqueous solution depends on the working parameters of the plasma such as the time exposure and the distance between the steel sample and the high voltage (HV) coil of the treatment reactor.


2011 ◽  
Vol 356-360 ◽  
pp. 161-164
Author(s):  
Cai Xiang Gu ◽  
Xiao Ming Zhao ◽  
Yan Sheng Yin ◽  
Gui Jun Ji

Advantage strains SRB and V.natriegens were obtained from the China East Sea for this study. Polarization curves, corrosion potential, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses were adopted in order to investigate the corrosion behaviors of 0Cr18Ni9 stainless steel under the combination action of anaerobic SRB and facultative anaerobic V.natriegens, The characteristics and mechanisms of microbial corrosion action in sea water were analyzed in this paper. The results show that SRB and V.natriegens promote each other’s growth when cultivated in the mixed microbe medium, in which the rate of corrosion is higher than that in the single microbe; Under the combined action of the mixed microbe, the microbial film gets wider and thicker, and corrosion products and metabolite are produced, which furthermore accelerates the passivation and pit corrosion to the 0Cr18Ni9 stainless steel.


2011 ◽  
Vol 480-481 ◽  
pp. 443-447
Author(s):  
Yan Hua Wang ◽  
Yuan Yuan Liu

The distributions of corrosion potential and galvanic current of 304 stainless steel under a NaCl droplet were studied by using the wire beam electrode (WBE). It was found that the distributions of the electrochemical parameters were heterogeneous with isolated anodic and cathodic zones appeared randomly. During the corrosion process, the polarity of some anodes changed with the evolution of time. The localized corrosion rate and heterogeneity increased firstly, and then decreased afterward with the increase of time, which can be attributed to the cooperative effects of the aggressive ions and the corrosion products.


Author(s):  
Young-Jin Kim

A protective insulated coating (PIC) on 304 stainless steel (SS) surfaces as an IGSCC mitigation method was developed and investigated in high temperature water under various water chemistry conditions by measuring the electrochemical corrosion potential (ECP) and flow-assisted corrosion (FAC) rate. The ECP results clearly demonstrate that the PIC layer restricted oxidant transport to the metal surface, and the ECP remained at <−230 mV (SHE) in 288°C containing high oxygen (O2) and no hydrogen (H2). In this paper, long term durability of PIC layer prepared by various coating methods will be discussed.


Sign in / Sign up

Export Citation Format

Share Document