Tuning of PID Controller for DC Servo Motor Using Improved Cuckoo Search Algorithm

Author(s):  
Kelvinder Singh ◽  
Irraivan Elamvazuthi ◽  
KuZilati KuShaari ◽  
Pranavanand Satyamurthy
Author(s):  
Davut Izci

This paper deals with the design of an optimally performed proportional–integral–derivative (PID) controller utilized for speed control of a direct current (DC) motor. To do so, a novel hybrid algorithm was proposed which employs a recent metaheuristic approach, named Lévy flight distribution (LFD) algorithm, and a simplex search method known as Nelder–Mead (NM) algorithm. The proposed algorithm (LFDNM) combines both LFD and NM algorithms in such a way that the good explorative behaviour of LFD and excellent local search capability of NM help to form a novel hybridized version that is well balanced in terms of exploration and exploitation. The promise of the proposed structure was observed through employment of a DC motor with PID controller. Optimum values for PID gains were obtained with the aid of an integral of time multiplied absolute error objective function. To verify the effectiveness of the proposed algorithm, comparative simulations were carried out using cuckoo search algorithm, genetic algorithm and original LFD algorithm. The system behaviour was assessed through analysing the results for statistical and non-parametric tests, transient and frequency responses, robustness, load disturbance, energy and maximum control signals. The respective evaluations showed better performance of the proposed approach. In addition, the better performance of the proposed approach was also demonstrated through experimental verification. Further evaluation to demonstrate better capability was performed by comparing the LFDNM-based PID controller with other state-of-the-art algorithms-based PID controllers with the same system parameters, which have also confirmed the superiority of the proposed approach.


2017 ◽  
Vol 116 ◽  
pp. 63-78 ◽  
Author(s):  
Geng Sun ◽  
Yanheng Liu ◽  
Ming Yang ◽  
Aimin Wang ◽  
Shuang Liang ◽  
...  

The classical proportional integral derivative (PID) controllers are still use in various applications in industry. Magnetic levitation (ML) systems are rigidly nonlinear and sometimes unstable systems. Due to inbuilt nonlinearities of ML systems, tracking of position of ML Systems is still difficult. For the tracking purpose of position, PID controller parameters are found by choosing Cuckoo Search Algorithm (CSA) of optimization. The ranges of parameters are customized by z-n method of parameters. Simulation results show the tracking of position of ML systems using conventional and optimized parameters obtained with the CSA based controller.


2018 ◽  
Vol 30 (4) ◽  
pp. 367-386 ◽  
Author(s):  
Liyang Xiao ◽  
Mahjoub Dridi ◽  
Amir Hajjam El Hassani ◽  
Wanlong Lin ◽  
Hongying Fei

Abstract In this study, we aim to minimize the total waiting time between successive treatments for inpatients in rehabilitation hospitals (departments) during a working day. Firstly, the daily treatment scheduling problem is formulated as a mixed-integer linear programming model, taking into consideration real-life requirements, and is solved by Gurobi, a commercial solver. Then, an improved cuckoo search algorithm is developed to obtain good quality solutions quickly for large-sized problems. Our methods are demonstrated with data collected from a medium-sized rehabilitation hospital in China. The numerical results indicate that the improved cuckoo search algorithm outperforms the real schedules applied in the targeted hospital with regard to the total waiting time of inpatients. Gurobi can construct schedules without waits for all the tested dataset though its efficiency is quite low. Three sets of numerical experiments are executed to compare the improved cuckoo search algorithm with Gurobi in terms of solution quality, effectiveness and capability to solve large instances.


Author(s):  
Wenjie Wang ◽  
Congcong Chen ◽  
Yuting Cao ◽  
Jian Xu ◽  
Xiaohua Wang

Background: Dexterity is an important index for evaluating the motion performance of a robot. The size of the robot connecting rods directly affects the performance of flexibility. Objective: The purpose of this study is to provide an overview of optimal design methods from many pieces of literature and patents, and propose a new optimal design method for ensuring the robot completes its tasks flexibly and efficiently under workspace constraints. Methods: The kinematics and working space of the robot are analyzed to determine the range of motion of each joint. Then, a dexterity index is established based on the mean value of the global spatial condition number. Finally, an improved cuckoo algorithm is proposed, which changes the step size control factor with the number of iterations. Taking the dexterity index as the objective optimization function and the working radius as the constraint condition, the improved cuckoo search algorithm is used to optimize the size of the robot rod. Results: The improved cuckoo algorithm and proposed rod size optimized method are fully evaluated by experiments and comparative studies. The optimization design process shows that the proposed method has better solution accuracy and faster convergence speed. The optimized design results show that the robot's dexterity index has increased by 26.1%. Conclusion: The proposed method has better solution accuracy and faster convergence speed. The method was suitable for optimizing the rod parameters of the robot, and it was very meaningful to improve the motion performance of the robot.


Sign in / Sign up

Export Citation Format

Share Document