scholarly journals Late Pleistocene cryogenic calcite spherolites from the Malachitdom Cave (NE Rhenish Slate Mountains, Germany): origin, unusual internal structure and stable C-O isotope composition

2008 ◽  
Vol 37 (2) ◽  
pp. 119-129 ◽  
Author(s):  
Detlev Richter ◽  
Dana Reichelmann
PalZ ◽  
2021 ◽  
Author(s):  
Consuelo Sendino ◽  
Martin M. Bochmann

AbstractA conulariid preserved in three dimensions from Ordovician fluvioglacial erratics of the Northern European Lowlands (North German Plain) is described under open nomenclature. It is assigned to the genus Conularia with similarities to Baltoscandian conulariids. The lithology of the erratic boulder and fauna contained in it provide important information on the origin and transport direction of the sediment preserved in a kame from the Saalian glaciation. This paper deals with the site of origin of the boulder in Baltoscandia analysing the comprised palaeofauna, from a palaeostratigraphic and palaeogeographic point of view, from its deposition in Ordovician times until its arrival at its current location in the Late Pleistocene. It also reveals for the first time the internal structure of the conulariid aperture.


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 94
Author(s):  
Xiaoxue Tong ◽  
Kaarel Mänd ◽  
Yuhao Li ◽  
Lianchang Zhang ◽  
Zidong Peng ◽  
...  

Banded iron formations (BIFs) are enigmatic chemical sedimentary rocks that chronicle the geochemical and microbial cycling of iron and carbon in the Precambrian. However, the formation pathways of Fe carbonate, namely siderite, remain disputed. Here, we provide photomicrographs, Fe, C and O isotope of siderite, and organic C isotope of the whole rock from the ~2.52 Ga Dagushan BIF in the Anshan area, China, to discuss the origin of siderite. There are small magnetite grains that occur as inclusions within siderite, suggesting a diagenetic origin of the siderite. Moreover, the siderites have a wide range of iron isotope compositions (δ56FeSd) from −0.180‰ to +0.463‰, and a relatively negative C isotope composition (δ13CSd = −6.20‰ to −1.57‰). These results are compatible with the reduction of an Fe(III)-oxyhydroxide precursor to dissolved Fe(II) through microbial dissimilatory iron reduction (DIR) during early diagenesis. Partial reduction of the precursor and possible mixing with seawater Fe(II) could explain the presence of siderite with negative δ56Fe, while sustained reaction of residual Fe(III)-oxyhydroxide could have produced siderite with positive δ56Fe values. Bicarbonate derived from both DIR and seawater may have provided a C source for siderite formation. Our results suggest that microbial respiration played an important role in the formation of siderite in the late Archean Dagushan BIF.


2021 ◽  
Vol 9 ◽  
Author(s):  
I. D. Streletskaya ◽  
A. A. Pismeniuk ◽  
A. A. Vasiliev ◽  
E. A. Gusev ◽  
G. E. Oblogov ◽  
...  

The Kara Sea coast and part of the shelf are characterized by wide presence of the ice-rich permafrost sequences containing massive tabular ground ice (MTGI) and ice wedges (IW). The investigations of distribution, morphology and isotopic composition of MTGI and IW allows paleoenvironmental reconstructions for Late Pleistocene and Holocene period in the Kara Sea Region. This work summarizes result of long-term research of ice-rich permafrost at eight key sites located in the Yamal, Gydan, Taimyr Peninsulas, and Sibiryakov Island. We identified several types of ground ice in the coastal sediments and summarized data on their isotopic and geochemical composition, and methane content. We summarized the available data on particle size distribution, ice chemical composition, including organic carbon content, and age of the enclosing ice sediments. The results show that Quaternary sediments of the region accumulated during MIS 5 – MIS 1 and generally consisted of two main stratigraphic parts. Ice-rich polygenetic continental sediments with syngenetic and epigenetic IW represent the upper part of geological sections (10–15 m). The IW formed in two stages: in the Late Pleistocene (MIS 3 – MIS 2) and in the Holocene cold periods. Oxygen isotope composition of IW formed during MIS 3 – MIS 2 is on average 6‰ lower than that of the Holocene IW. The saline clay with rare sand layers of the lower part of geological sections, formed in marine and shallow shelf anaerobic conditions. MTGI present in the lower part of the sections. The MTGI formed under epigenetic freezing of marine sediments immediately after sea regression and syngenetic freezing of marine sediments in the tidal zone and in the conditions of shallow sea.


Author(s):  
Tao Luo ◽  
Qiuli Li ◽  
Xiaoxiao Ling ◽  
Yang Li ◽  
Chuan Yang ◽  
...  

Zircon U-Pb geochronology and Hf-O isotope composition can provide important information on geological events. The matrix-matched reference material is routinely used to yield accurate and precise zircon U-Pb ages and...


2021 ◽  
Author(s):  
Ming Jian Cao ◽  
Noreen J. Evans ◽  
Pete Hollings ◽  
David R. Cooke ◽  
Brent I.A. McInnes ◽  
...  

Abstract The trace elemental and isotopic signatures in apatite can be modified during hydrothermal alteration. This study investigates the suitability of apatite as an indicator of the source, chemistry, and evolution of magma and hydrothermal fluids. In situ textural, elemental, and O-Sr-Nd isotope analyses were performed on apatite in thin sections, from fresh and propylitically altered pre- and synmineralized dioritic porphyries from the Black Mountain porphyry Cu deposit in the Philippines. All studied apatite crystals have similar subhedral to euhedral shapes and are homogeneous in the grayscale in backscattered electron images. In cathodoluminescence images, the apatite in fresh and altered rocks displays yellow to yellow-green and green to brown luminescence, respectively. Apatite in fresh rocks has a higher Cl and Mn content, and lower Fe, Mg, Sr, Pb, and calculated XOH-apatite, compared to apatite in altered rocks. The content of F, rare earth elements (REEs), Y, U, Th, and Zr, and the Sr-Nd isotope signatures of apatite from fresh and altered rocks are similar in all apatite grains (87Sr/86Sr = 0.7034–0.7042 vs. 0.7032–0.7043, εNd(t) = 5.3–8.0 vs. 5.1–8.4). The X-ray maps and elemental and oxygen isotope signatures across individual apatite crystals are typically homogeneous in apatite from both fresh and altered rocks. The distinct luminescence colors, coupled with distinct mobile element compositions (Cl, OH, Mn, Mg, Fe, Sr, Pb), indicate modification of primary magmatic apatite during interaction with hydrothermal fluids. The similarities in Sr isotope ratios (87Sr/86Sr = 0.7032–0.7043) but slight differences in O isotope signatures (δ18O = 6.0 ± 0.3‰ vs. 6.6 ± 0.3‰) in apatite from fresh and altered rocks are consistent with the magma and hydrothermal fluids having the same source and suggest significant phase separation in the hydrothermal fluids given that 18O preferentially fractionates into the residual liquid relative to 16O during phase separation. The similarity of immobile element (REE, Y, U, Th, and Zr) contents in both populations of apatite, consistency of textures and Nd isotope compositions, and absence of obvious dissolution-reprecipitation features all suggest that altered apatite retains some magmatic characteristics. The apatite in fresh rocks has oxygen isotope compositions similar to that of zircons from the same sample (δ18O = 5.9 ± 0.3‰), indicating little to no oxygen isotope fractionation between zircon and apatite and that apatite can be a good proxy for the oxygen isotope composition of the magma. Based on the Cl contents of the magmatic and replacement apatite, and assuming their equilibrium with high-temperature magma fluid and replacement hydrothermal fluid, respectively, the calculated Cl content of the early magmatic fluid and the later replacement fluid can be estimated to be 6.4 to 15.1 wt % and ~0.25 ± 0.03 wt %, respectively. This indicates a depletion of Cl from the early high-temperature fluid to the replacement fluid, consistent with phase separation. This study demonstrates that cathodoluminescence, elemental compositions (such as Cl, Mn, Mg, Fe, Sr, Pb) and Sr-O isotope signatures in apatite can be modified during hydrothermal alteration, whereas other components (REE, Y, U, Th, and Zr) and the Nd isotope composition are preserved. These features can be used to constrain the origin, chemistry, and evolution of the primary magma and ore-forming hydrothermal fluids.


Sign in / Sign up

Export Citation Format

Share Document