Effects of hydrogen peroxide on the germination and early seedling growth of barley under NaCl and high temperature stresses

2010 ◽  
pp. 70-79 ◽  
Author(s):  
Kürşat Çavuşoğlu ◽  
Kudret Kabar
2020 ◽  
Vol 33 (2) ◽  
pp. 336-348 ◽  
Author(s):  
Davide Gerna ◽  
Thomas Roach ◽  
Birgit Mitter ◽  
Wolfgang Stöggl ◽  
Ilse Kranner

In endophytes, the abundance of genes coding for enzymes processing reactive oxygen species (ROS), including hydrogen peroxide (H2O2), argues for a crucial role of ROS metabolism in plant-microbe interaction for plant colonization. Here, we studied H2O2 metabolism of bread wheat (Triticum aestivum L.) seeds and their microbiota during germination and early seedling growth, the most vulnerable stages in the plant life cycle. Treatment with hot steam diminished the seed microbiota, and these seeds produced less extracellular H2O2 than untreated seeds. Using a culture-dependent approach, Pantoea and Pseudomonas genera were the most abundant epiphytes of dry untreated seeds. Incubating intact seedlings from hot steam–treated seeds with Pantoea strains triggered H2O2 production, whereas Pseudomonas strains dampened H2O2 levels, attributable to higher catalase activities. The genus Pantoea was much less represented among seedling endophytes than genus Pseudomonas, with other endophytic genera, including Bacillus and Paenibacillus, also possessing high catalase activities. Overall, our results show that certain bacteria of the seed microbiota are able to modulate the extracellular redox environment during germination and early seedling growth, and high catalase activity is proposed as a key trait of seed endophytes.


2014 ◽  
Vol 106 (6) ◽  
pp. 2305-2315 ◽  
Author(s):  
Nimir Eltyb Ahmed Nimir ◽  
Shiyuan Lu ◽  
Guisheng Zhou ◽  
B. L. Ma ◽  
Wenshan Guo ◽  
...  

2017 ◽  
Vol 45 (2) ◽  
pp. 282-295
Author(s):  
R. Vihotogbé ◽  
C. Watson ◽  
R. Glèlè Kakaï ◽  
F. Wichern ◽  
B. Sinsin ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 323
Author(s):  
Sujuan Shi ◽  
Lulu An ◽  
Jingjing Mao ◽  
Oluwaseun Olayemi Aluko ◽  
Zia Ullah ◽  
...  

CBL-interacting protein kinase (CIPK) family is a unique group of serine/threonine protein kinase family identified in plants. Among this family, AtCIPK23 and its homologs in some plants are taken as a notable group for their importance in ions transport and stress responses. However, there are limited reports on their roles in seedling growth and development, especially in Solanaceae plants. In this study, NtCIPK23, a homolog of AtCIPK23 was cloned from Nicotiana tabacum. Expression analysis showed that NtCIPK23 is mainly expressed in the radicle, hypocotyl, and cotyledons of young tobacco seedlings. The transcriptional level of NtCIPK23 changes rapidly and spatiotemporally during seed germination and early seedling growth. To study the biological function of NtCIPK23 at these stages, the overexpressing and CRISPR/Cas9-mediated knock-out (ntcipk23) tobacco lines were generated. Phenotype analysis indicated that knock-out of NtCIPK23 significantly delays seed germination and the appearance of green cotyledon of young tobacco seedling. Overexpression of NtCIPK23 promotes cotyledon expansion and hypocotyl elongation of young tobacco seedlings. The expression of NtCIPK23 in hypocotyl is strongly upregulated by darkness and inhibited under light, suggesting that a regulatory mechanism of light might underlie. Consistently, a more obvious difference in hypocotyl length among different tobacco materials was observed in the dark, compared to that under the light, indicating that the upregulation of NtCIPK23 contributes greatly to the hypocotyl elongation. Taken together, NtCIPK23 not only enhances tobacco seed germination, but also accelerate early seedling growth by promoting cotyledon greening rate, cotyledon expansion and hypocotyl elongation of young tobacco seedlings.


Sign in / Sign up

Export Citation Format

Share Document