scholarly journals Detection of Liberibacter asiaticus in a single infected Asian citrus psyllid adult or nymph: Impact of dilution with clean Asian citrus psyllids (Diaphorina citri) during extraction

2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Cynthia LeVesque ◽  
Lucita Kumagai ◽  
Cheryl Bloomquist ◽  
Manjunath Keremane ◽  
Richard Lee ◽  
...  
2011 ◽  
Vol 12 (1) ◽  
pp. 24 ◽  
Author(s):  
Yulu Xia ◽  
Gecheng Ouyang ◽  
Ronald A. Sequeira ◽  
Yu Takeuchi ◽  
Ignacio Baez ◽  
...  

The Asian form of huanglongbing (HLB) is caused by ‘Candidatus Liberibacter asiaticus (Las),’ a phloem-limited bacterium transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama. Nutrient management, together with other cultural practices such as pruning and irrigation, for mitigation of the disease has been practiced in China for many years. Our literature review, field survey, and interviews with Chinese scientists and growers indicate that these cultural practices were generally ineffective for the disease management. However, a nutritional approach in conjunction with other cultural practices such as irrigation can maintain grove productivity for a certain time depending on the type of citrus species/cultivars, the age of the trees, the propagation method of the plants, the Asian citrus psyllid (ACP) (Diaphorina citri Kuwayama) population, and other factors. Symptomatic mature pommelo (Citrus maxima Merr) and sweet orange (C. sinensis L. Osbeck) plants can commonly survive and maintain a certain level of productivity for an additional 4 to 5 years, even longer assuming vigorous ACP control. Accepted for publication 27 June 2011. Published 3 October 2011.


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 262
Author(s):  
Nabil Killiny ◽  
Pedro Gonzalez-Blanco ◽  
Yulica Santos-Ortega ◽  
Fuad Al-Rimawi ◽  
Amit Levy ◽  
...  

Huánglóngbìng (HLB), citrus greening, is one of the most destructive diseases of citrus plants worldwide. In North America, HLB is caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus and is transmitted by the Asian citrus psyllid, Diaphorina citri. No cure exists at present, and the use of antibiotics for the control of HLB has gained interest due to the significant losses to the citrus industry. Because of unsatisfactory results when using foliar applications of antibiotics, concerns were raised regarding the uptake and translocation of these materials within trees. We, therefore, investigated a method that allows us to study the movement of antibiotic materials in citrus plants. Herein, we utilized a fluorescence-labeled penicillin, BOCILLIN™ FL-Penicillin (FL-penicillin), to study the uptake and translocation of penicillin in citrus plants. FL-penicillin was applied by puncture to the stem of young citrus seedlings and was traced by using fluorescence microscopy. After application, we detected FL-penicillin in the leaves and in the stem xylem and phloem tissues above and below the application site in both intact and partially bark-girdled citrus seedlings, indicating that it is easily taken up and transported through the plant vascular system. In addition, we detected FL-penicillin in the gut of D. citri, which were allowed to feed on the treated plants, suggesting translocation of this molecule into the vascular tissue. We propose that the use of fluorescent-labeled molecules could be an effective tool for understanding the uptake and translocation of antibiotics and other macromolecules in plants and insects.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
El-Desouky Ammar ◽  
Justin George ◽  
Kasie Sturgeon ◽  
Lukasz L. Stelinski ◽  
Robert G. Shatters

Abstract The Asian citrus psyllid (Diaphorina citri) transmits the bacterium ‘Candidatus Liberibacter asiaticus’ (CLas), which causes huanglongbing (citrus greening) disease, in a circulative-propagative manner. We compared CLas inoculation efficiency of D. citri nymphs and adults into healthy (uninfected) citron leaves when both vector stages were reared from eggs on infected plants. The proportion of CLas-positive leaves was 2.5% for nymphs and 36.3% for adults. CLas acquisition by early instar nymphs followed by dissections of adults and 4th instar nymphs revealed that CLas bacterium had moved into the head-thorax section (containing the salivary glands) in 26.7–30.0% of nymphs and 37–45% of adults. Mean Ct values in these sections were 31.6–32.9 and 26.8–27.0 for nymphs and adults, respectively. Therefore, CLas incidence and titer were higher in the head-thorax of adults than in nymphs. Our results suggest that following acquisition of CLas by early instar D. citri nymphs, emerging adults inoculate the bacteria into citrus more efficiently than nymphs because adults are afforded a longer latent period necessary for multiplication and/or translocation of CLas into the salivary glands of the vector. We propose that CLas uses D. citri nymphs mainly for pathogen acquisition and multiplication, and their adults mainly for pathogen inoculation and spread.


2019 ◽  
Vol 112 (4) ◽  
pp. 379-387
Author(s):  
Laura Izascum Pérez-Valencia ◽  
Andrew P Michel ◽  
Gustavo Moya-Raygoza ◽  
Aarón Rodríguez

Abstract The Asian citrus psyllid, Diaphorina citri Kuwayama, is native to Asia but has recently invaded North America. Asian citrus psyllid is a significant pest of citrus crops by its direct feeding but, more importantly, as the vector of the bacterium ‘Candidatus Liberibacter asiaticus’, which causes Huanglongbing disease. Asian citrus psyllid was first found in México in 2001 and 2002 and, since then, has spread quickly across the country, suggesting rapid adaptation to new environments. Yet, we lack information on the genetic variation and structure that could facilitate or inhibit adaptation. Using six microsatellite markers, we analyzed genetic variation and structure among six localities in México: three in western states near the Pacific coast and two in the Yucatán Peninsula near the Gulf of México. We found low genetic diversity (no more than three alleles per locus) and intermediate differentiation between all populations. Asian citrus psyllid populations clustered into two genetic groups, but, surprisingly, these clusters were present in western populations. The first group included El Arenal, and the second group included Autlán de Navarro, Colima, and Tecomán. Interestingly, both of the Yucatán populations shared variation from the two clusters, suggesting admixture. We infer that reproductive isolation, barriers to gene flow, local selection, and the possibility of multiple invasions have influenced the current genetic structure of Asian citrus psyllid in México.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 931
Author(s):  
Yulica Santos-Ortega ◽  
Nabil Killiny

The Asian citrus psyllid, Diaphorina citri Kuwayama is devastating the citrus industry worldwide. It transmits ‘Candidatus Liberibacter asiaticus’, the pathogen of Huanglongbing in citrus. RNA interference is an excellent tool for functional genomics and for screening target genes for pest control. Herein, we silenced the aquaporin (AQP) gene (DcAQP) homologue in D. citri to study its functionality and whether it could be a good target for a control strategy. AQP is an integral membrane channel protein that aids in the rapid flux of water and other small solutes that move across the lipid membrane. In Hemiptera, it is well established that AQP plays important roles in adjusting to physiological challenges including (1) regulating osmotic stress between the gut lumen and hemolymph after imbibing large quantities of a low nitrogen, sugar-rich liquid diet; (2) avoiding or preventing dehydration and desiccation; and (3) surviving at elevated temperatures. The dsRNA-DcAQP was applied twice to nymphs of the 4th and 5th instars through a soaking technique. Silencing AQP caused a significant increase in nymph mortality. Emerged adults showed malformations and a shorter lifespan. Silencing DcAQP provoked alterations in some metabolites and increased the uric acid content in emerged adults. DcAQP could be a useful target to control D. citri.


HortScience ◽  
2012 ◽  
Vol 47 (10) ◽  
pp. 1449-1452 ◽  
Author(s):  
Abigail J. Walter ◽  
YongPing Duan ◽  
David G. Hall

Huanglongbing, one of the most devastating diseases of citrus, is associated with the bacterium ‘Candidatus Liberibacter asiaticus’ vectored by the Asian citrus psyllid, Diaphorina citri, in North America. Murraya paniculata is a common ornamental plant that is an alternate host of both the psyllid and bacterium. We tested M. paniculata and Citrus sinensis grown together in the same field for their titer of ‘Ca. L. asiaticus’. We found the bacterium in both M. paniculata and C. sinensis, but the titer was four orders of magnitude lower in M. paniculata. We also assayed D. citri from laboratory colonies reared on either ‘Ca. L. asiaticus’-infected M. paniculata or infected Citrus spp. Psyllids reared on infected M. paniculata also carried bacterial titers five orders of magnitude lower than psyllids reared on infected Citrus spp. These observations imply resistance to huanglongbing in M. paniculata.


Sign in / Sign up

Export Citation Format

Share Document