scholarly journals SQUEEZE FILM LUBRICATION OF ASYMMETRIC ROLLERS BY BINGHAM PLASTIC FLUID

2021 ◽  
Vol 16 ◽  
Author(s):  
Revathi Gadamsetty ◽  
Venkata Subrahmanyam Sajja ◽  
P. Sudam Sekhar ◽  
Dhaneshwar Prasad
2020 ◽  
Vol 15 ◽  
Author(s):  
Revathi Gadamsetty ◽  
Venkata Subrahmanyam Sajja ◽  
P. Sudam Sekhar ◽  
Dhaneshwar Prasad

2020 ◽  
Vol 75 (6) ◽  
pp. 533-542
Author(s):  
Poosan Muthu ◽  
Vanacharla Pujitha

AbstractThe influence of concentration of solute particles on squeeze film lubrication between two poroelastic surfaces has been analyzed using a mathematical model. Newtonian viscous fluid is considered as a lubricant whose viscosity varies linearly with concentration of suspended solute particles. Convection-diffusion model is proposed to study the concentration of solute particles and is solved using finite difference method of Crank–Nicolson scheme. An iterative procedure is used to get the solution for concentration, pressure and velocity components in film region. It has been observed that load carrying capacity decreases as the concentration of solute particles in the fluid film decreases. Further, the concentration of suspended solute particles decreases as the permeability of the poroelastic plate increases and these results may be useful in understanding the mechanism of human joint.


2006 ◽  
Vol 58 (4) ◽  
pp. 176-186 ◽  
Author(s):  
N.M. Bujurke ◽  
N.B. Naduvinamani ◽  
Syeda Tasneem Fathima ◽  
S.S. Benchalli

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Binbin Su ◽  
Xianghe Zou ◽  
Lirong Huang

Purpose This paper aims to investigate the squeeze film lubrication properties of hexagonal patterned surface inspired by the epidermis structure of tree frog’s toe pad and numerically explore the working mechanism of hexagonal micropillar during the acquisition process of high adhesive and friction for wet contacts. Design/methodology/approach A two-dimensional elastohydrodynamic numerical model is employed for the squeezing contacts. The pressure distribution, load carrying capacity and liquid flow rate of the squeeze film are obtained through a simultaneous solution of the two-dimensional Reynolds equation and elasticity deformation equations. Findings Higher pressure is found to be longitudinally distributed across individual hexagonal pillar, with pressure peak emerging at the center of hexagonal pillar. Expanding the area density and shrinking the channel depth or initial film thickness will improve the magnitude of squeezing pressure. Relatively lower pressure is generated inside interconnected channels, which reduces the load carrying capacity of the squeeze film. Meanwhile, the introduction of microchannel is revealed to downscale the total mass flow rate of squeezing contacts. Originality/value This paper provides a good proof for the working mechanism of surface microstructures during the acquisition process of high adhesive and friction for wet contacts.


2015 ◽  
Vol 10 (1) ◽  
pp. 76-83 ◽  
Author(s):  
Neminath Bujappa Naduvinamani ◽  
Siddangouda Apparao ◽  
Hiremath Ayyappa Gundayya ◽  
Shivraj Nagshetty Biradar

2011 ◽  
Vol 694 ◽  
pp. 575-579
Author(s):  
Jian Hui Zhang ◽  
Hai Bo Sun

Fe3O4 ferrofluids with uniform magnetic particles were prepared via improved chemical coprecipation technique. A narrow distribution of 8.6-10.8 nm particle sizes was obtained from the magnetization curve using the free-form-model based on Bayesian inference theory. The mean particle diameter about 9.8 nm is consistent with the XRD and SEM results. The hydrodynamic properties of ferrofluids were investigated with different applied magnetic field and shear rate. The experimental results show that diluted ferrofluid and concentrated ferrofluid are Newtonian-fluid and Bingham-plastic fluid, respectively.


Sign in / Sign up

Export Citation Format

Share Document