scholarly journals Ni-Solder (Pb/Sn) Selective Wet-Etching Method in Acidic Solutions.

1999 ◽  
Vol 2 (1) ◽  
pp. 29-34
Author(s):  
Yukio KIZAKI ◽  
Kazuhito HIGUCHI ◽  
Soichi HONMA ◽  
Hiroshi YAMADA
2012 ◽  
Vol 195 ◽  
pp. 143-145 ◽  
Author(s):  
Emanuel I. Cooper ◽  
Rekha Rajaram ◽  
Makonnen Payne ◽  
Steven Lippy

Titanium nitride (TiN) is widely used as a hard mask film protecting the inter-level dielectric (ILD) before metal or plating seed layer deposition steps. It is common practice to use a wet etch in order to remove residues formed during the ILD dry-etch step, and at the same time to remove some or all of the exposed TiN. From its thermochemical properties, it might be predicted that wet etching of TiN should be easy, since it is quite unstable with respect to both plain and oxidative hydrolysis. For example, in acidic solutions at 25°C [1, :


Author(s):  
Zhe Huang ◽  
Hau Ping Chan ◽  
Emma Pickwell-MacPherson ◽  
Edward P. J. Parrott

2005 ◽  
Vol 475-479 ◽  
pp. 2223-2226
Author(s):  
Zhi-gang Sun ◽  
Masaki Mizuguchi ◽  
Hiroyuki Akinaga

Magnetoresistive switch effect (MRS effect) devices containing two gold (Au) electrodes with a gap less than 2 µm were successfully fabricated on semi-insulting GaAs substrates by wet etching method. Huge MRS effect was observed. Magnetoresistance (MR) ratio reached 1,000,000% under the magnetic filed of 1.5 T when the devices were operated just above the threshold voltage. The magnetic field sensitivity at small magnetic fields was significantly improved. MR ratio of more than 1000% was achieved at 0.03 T. A relative high MR ratio of 100,000% under the magnetic filed of 1.5 T was also achieved when the devices operating before the threshold voltage.


2013 ◽  
Vol 737 ◽  
pp. 60-66
Author(s):  
Ali Syari’ati ◽  
Veinardi Suendo

Porous silicon (p-Si) is a well-known silicon based material that can emit visible light at room temperature. The radiative recombination that originated from quantum confinement effect shows photoluminescence (PL) in red, while the defect on silicon oxide at the surface of p-Si shows in blue-green region. Porous silicon can be synthesized through two methods; wet-etching and electrochemical anodization using hydrofluoric acid as the main electrolyte. The electrochemical anodization is more favorable due to faster etching rate at the surface than the conventional wet-etching method. The objective of this research is to show that both of porous silicons can be synthesized using the same main electrolyte but by varying the reaction environment during anodization/etching process. Here, we shows the wet-etching method that enhanced by polarization concentration will produce porous silicon with silicon oxide defects by means blue-green emission, while direct electrochemical anodization will produce samples that emit red PL signal. The effect of introducing KOH into the electrolyte was also studied in the case of enhanced-wet-etching method. Surface morphology of porous silicon and their photoluminescence were observed by Scanning Electron Microscope and PL spectroscopy, respectively.


2013 ◽  
Vol 21 (8) ◽  
pp. 1966-1973
Author(s):  
钟年丙 ZHONG Nian-bing ◽  
王永忠 WANG Yong-zhong ◽  
廖强 LIAO Qiang ◽  
朱恂 ZHU Xun ◽  
陈蓉 CHEN Rong

Sign in / Sign up

Export Citation Format

Share Document