scholarly journals Two-Dimensional Equatorial Electrojet Current System Deduced from the Brazilian Network : 1. Based on the H component

Author(s):  
R Colqui ◽  
Kiyohumi Yumoto ◽  
Hiroshi Tachihara ◽  
T-I Kitamura ◽  
N. B. Trivedi ◽  
...  
Nature ◽  
1984 ◽  
Vol 311 (5982) ◽  
pp. 134-135 ◽  
Author(s):  
R. J. Lunnen ◽  
H. S. Lee ◽  
A. J. Ferraro ◽  
T. W. Collins ◽  
R. F. Woodman

1999 ◽  
Vol 17 (2) ◽  
pp. 220-230 ◽  
Author(s):  
R. G. Rastogi

Abstract. Huancayo is the only equatorial electrojet station where the daytime increase of horizontal geomagnetic field (H) is associated with a simultaneous increase of eastward geomagnetic field (Y). It is shown that during the counter electrojet period when ∆H is negative, ∆Y also becomes negative. Thus, the diurnal variation of ∆Y at equatorial latitudes is suggested to be a constituent part of the equatorial electrojet current system. Solar flares are known to increase the H field at an equatorial station during normal electrojet conditions (nej). At Huancayo, situated north of the magnetic equator, the solar flare effect, during nej, consists of positive impulses in H and Y and negative impulse in Z field. During counter electrojet periods (cej), a solar flare produces a negative impulse in H and Y and a positive impulse in Z at Huancayo. It is concluded that both the zonal and meridional components of the equatorial electrojet in American longitudes, as in Indian longitudes, flows in the same, E region of the ionosphere.Key words. Geomagnetism and paleomagnetism (dynamo theories) · Ionosphere (equatorial ionosphere; ionosphere disturbances)


1999 ◽  
Vol 17 (11) ◽  
pp. 1426-1438 ◽  
Author(s):  
R. G. Rastogi

Abstract. The work describes an intensive study of storm sudden commencement (SSC) impulses in horizontal (H), eastward (Y) and vertical (Z) fields at four Indian geomagnetic observatories between 1958–1992. The midday maximum of ΔH has been shown to exist even at the low-latitude station Alibag which is outside the equatorial electrojet belt, suggesting that SSC is associated with an eastward electric field at equatorial and low latitudes. The impulses in Y field are shown to be linearly and inversely related to ΔH at Annamalainagar and Alibag. The average SC disturbance vector is shown to be about 10–20°W of the geomagnetic meridian. The local time variation of the angle is more westerly during dusk hours in summer and around dawn in the winter months. This clearly suggests an effect of the orientation of shock front plane of the solar plasma with respect to the geomagnetic meridian. The ΔZ at SSC have a positive impulse as in ΔH. The ratio of ΔZ/ΔH are abnormally large exceeding 1.0 in most of the cases at Trivandrum. The latitudinal variation of ΔZ shows a tendency towards a minimum over the equator during the nighttime hours. These effects are explained as (1) resulting from the electromagnetic induction effects due to the equatorial electrojet current in the subsurface conducting layers between India and Sri Lanka, due to channelling of ocean currents through the Palk Strait and (2) due to the concentration of induced currents over extended latitude zones towards the conducting graben between India and Sri Lanka just south of Trivandrum.Key words. Interplanetary physics (interplanetary shocks) · Ionosphere (equatorial ionosphere) · Magnetospheric physics (storms and substorms)


2009 ◽  
Vol 27 (4) ◽  
pp. 1509-1520 ◽  
Author(s):  
D. T. Farley

Abstract. In this short tutorial we first briefly review the basic physics of the E-region of the equatorial ionosphere, with emphasis on the strong electrojet current system that drives plasma instabilities and generates strong plasma waves that are easily detected by radars and rocket probes. We then discuss the instabilities themselves, both the theory and some examples of the observational data. These instabilities have now been studied for about half a century (!), beginning with the IGY, particularly at the Jicamarca Radio Observatory in Peru. The linear fluid theory of the important processes is now well understood, but there are still questions about some kinetic effects, not to mention the considerable amount of work to be done before we have a full quantitative understanding of the limiting nonlinear processes that determine the details of what we actually observe. As our observational techniques, especially the radar techniques, improve, we find some answers, but also more and more questions. One difficulty with studying natural phenomena, such as these instabilities, is that we cannot perform active cause-and-effect experiments; we are limited to the inputs and responses that nature provides. The one hope here is the steadily growing capability of numerical plasma simulations. If we can accurately simulate the relevant plasma physics, we can control the inputs and measure the responses in great detail. Unfortunately, the problem is inherently three-dimensional, and we still need somewhat more computer power than is currently available, although we have come a long way.


2017 ◽  
Vol 23 (2) ◽  
pp. 1357-1360 ◽  
Author(s):  
Nurul Shazana Abdul Hamid ◽  
Wan Nur Izzaty Ismail ◽  
Akimasa Yoshikawa

2008 ◽  
Vol 60 (6) ◽  
pp. 623-632 ◽  
Author(s):  
R. G. Rastogi ◽  
H. Chandra ◽  
M. E. James ◽  
K. Kitamura ◽  
K. Yumoto

Sign in / Sign up

Export Citation Format

Share Document