scholarly journals Attention-based Convolutional Neural Network for MRI Gibbs-ringing Artifact Suppression

2020 ◽  
pp. paper34-1-paper34-12
Author(s):  
Maksim Penkin ◽  
Andrey Krylov ◽  
Alexander Khvostikov

Gibbs-ringing artifact is a common artifact in MRI image processing. As MRI raw data is taken in a frequency domain, 2D in- verse discrete Fourier transform is applied to visualize data. Inability to take inverse Fourier transform of full spectrum (full k-space) leads to the insufficient sampling of the high frequency data and results in a well-known Gibbs phenomenon. It is worth to notice that truncation of high frequency information generates a significant blur, thus some techniques from other image restoration problems (for example, image deblur task) can be successfully used. We propose attention-based convolutional neural network for Gibbs-ringing reduction which is the extension of recently proposed GAS-CNN (Gibbs-ringing Artifact Suppression Convolutional Neural Network). Proposed method includes simplified non-linear mapping, amended by LRNN (Layer Recurrent Neural Network) refinement block with feature attention module, controlling the correlation between input and output tensors of the refinement unit. The research shows that the proposed post-processing refinement construction considerably simplifies the non-linear mapping.

Risks ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 6 ◽  
Author(s):  
Guangyuan Gao ◽  
Mario Wüthrich

The aim of this project is to analyze high-frequency GPS location data (second per second) of individual car drivers (and trips). We extract feature information about speeds, acceleration, deceleration, and changes of direction from this high-frequency GPS location data. Time series of this feature information allow us to appropriately allocate individual car driving trips to selected drivers using convolutional neural networks.


2019 ◽  
Vol 9 (22) ◽  
pp. 4874 ◽  
Author(s):  
Xiaofeng Du ◽  
Yifan He

Super-resolution (SR) technology is essential for improving image quality in magnetic resonance imaging (MRI). The main challenge of MRI SR is to reconstruct high-frequency (HR) details from a low-resolution (LR) image. To address this challenge, we develop a gradient-guided convolutional neural network for improving the reconstruction accuracy of high-frequency image details from the LR image. A gradient prior is fully explored to supply the information of high-frequency details during the super-resolution process, thereby leading to a more accurate reconstructed image. Experimental results of image super-resolution on public MRI databases demonstrate that the gradient-guided convolutional neural network achieves better performance over the published state-of-art approaches.


2021 ◽  
Vol 7 ◽  
Author(s):  
Franz Bamer ◽  
Denny Thaler ◽  
Marcus Stoffel ◽  
Bernd Markert

The evaluation of the structural response statistics constitutes one of the principal tasks in engineering. However, in the tail region near structural failure, engineering structures behave highly non-linear, making an analytic or closed form of the response statistics difficult or even impossible. Evaluating a series of computer experiments, the Monte Carlo method has been proven a useful tool to provide an unbiased estimate of the response statistics. Naturally, we want structural failure to happen very rarely. Unfortunately, this leads to a disproportionately high number of Monte Carlo samples to be evaluated to ensure an estimation with high confidence for small probabilities. Thus, in this paper, we present a new Monte Carlo simulation method enhanced by a convolutional neural network. The sample-set used for this Monte Carlo approach is provided by artificially generating site-dependent ground motion time histories using a non-linear Kanai-Tajimi filter. Compared to several state-of-the-art studies, the convolutional neural network learns to extract the relevant input features and the structural response behavior autonomously from the entire time histories instead of learning from a set of hand-chosen intensity inputs. Training the neural network based on a chosen input sample set develops a meta-model that is then used as a meta-model to predict the response of the total Monte Carlo sample set. This paper presents two convolutional neural network-enhanced strategies that allow for a practical design approach of ground motion excited structures. The first strategy enables for an accurate response prediction around the mean of the distribution. It is, therefore, useful regarding structural serviceability. The second strategy enables for an accurate prediction around the tail end of the distribution. It is, therefore, beneficial for the prediction of the probability of failure.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 619 ◽  
Author(s):  
Ha-Eun Ahn ◽  
Jinwoo Jeong ◽  
Je Woo Kim

Visual quality and algorithm efficiency are two main interests in video frame interpolation. We propose a hybrid task-based convolutional neural network for fast and accurate frame interpolation of 4K videos. The proposed method synthesizes low-resolution frames, then reconstructs high-resolution frames in a coarse-to-fine fashion. We also propose edge loss, to preserve high-frequency information and make the synthesized frames look sharper. Experimental results show that the proposed method achieves state-of-the-art performance and performs 2.69x faster than the existing methods that are operable for 4K videos, while maintaining comparable visual and quantitative quality.


2019 ◽  
Vol 8 (3) ◽  
pp. 3429-3434

The theory of control systems deals with the analysis and design of interacting components of a system in a configuration that provides the desired behavior. This paper deals with the problem of the identification of non-linear systems through Convolutional Neural Network (CNN). We propose a structure of a CNN and perform simulations with test data using unsupervised learning for the identification of nonlinear systems. Also, MLP is used to compare the results when there is noise in the training data, which allows us to see that the proposed CNN has better performance and can be used for cases where the noise is present. The proposed CNN is validated with test data. Tests are carried out with Gas oven data, comparing the proposed structure of CNN with a MLP. When there is noise in the data, CNN has better performance than MLP.


2020 ◽  
Author(s):  
Yusuke Watanabe ◽  
Mami Okada ◽  
Yuji Ikegaya

AbstractHippocampal ripples are transient neuronal features observed in high-frequency oscillatory bands of local field potentials, and they occur primarily during periods of behavioral immobility and slow-wave sleep. Ripples have been defined based on mathematically engineered features, such as magnitudes, durations, and cycles per event. However, the “ripples” could vary from laboratory to laboratory because their definition is subject to human bias, including the arbitrary choice of parameters and thresholds. In addition, local field potentials are often influenced by myoelectric noise arising from animal movement, making it difficult to distinguish ripples from high-frequency noises. To overcome these problems, we extracted ripple candidates under few constraints and labeled them as binary or stochastic “true” or “false” ripples using Gaussian mixed model clustering and a deep convolutional neural network in a weakly supervised fashion. Our automatic method separated ripples and myoelectric noise and was able to detect ripples even when the animals were moving. Moreover, we confirmed that a convolutional neural network was able to detect ripples defined by our method. Leave-one-animal-out cross-validation estimated the area under the precision-recall curve for ripple detection to be 0.72. Finally, our model establishes an appropriate threshold for the ripple magnitude in the case of the conventional detection of ripples.


Sign in / Sign up

Export Citation Format

Share Document