scholarly journals Application of Heuristic Modeling in the Development of an Algorithm for Generating a Binary Tree of an Object According to a Technical Drawing

2020 ◽  
pp. short32-1-short32-9
Author(s):  
Valeriya Tyurina ◽  
Marina Lagunova ◽  
Maria Smychek

This article presents the problem of developing an algorithm for automated reading of a drawing of an object, consisting of three types with the necessary cuts. According to the drawing, a partition of the object into nonderivative figures should be obtained and boolean operations should be identified, with the help of which the final composite figure will be constructed from non-derivative figures. Thus, in the process of solving this problem, a socalled binary tree of the modeled composite figure will be generated. Moreover, it is necessary to take into account the multiplicativity of the solution to this problem and the possibility of choosing optimal solutions. This paper poses a specific problem, in which non-derivative figures can be got using four formbuilding operations available in the arsenal of tools for getting three-dimensional elements in the Compass 3D geometric modeling system, namely, such operations as "extrusion", "rotation", "along the trajectory" and "cross-sections".

2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Hong Zhou ◽  
Kwun-Lon Ting

A 3D multilayer wide curve is a spatial curve with variable cross sections and multiple materials. The performance of multimaterial compliant mechanisms and structures is enhanced by integrating multiple materials into one-piece configurations. This paper introduces a geometric modeling method for spatial multimaterial compliant mechanisms and structures by using 3D multilayer wide curves. Based on the introduced modeling method, a geometric synthesis approach is proposed. In this paper, every connection in a spatial multimaterial compliant mechanism or structure is represented by a 3D multilayer wide curve and the whole compliant mechanism or structure is modeled as a set of connected wide curves. The geometric modeling and synthesis are considered as the generation and optimization of the control parameters of the corresponding 3D multilayer wide curves. The performance of spatial multimaterial compliant mechanisms and structures is evaluated by the isoparametric degenerate-continuum nonlinear finite element procedure. The problem-dependent objectives are optimized and the practical constraints are imposed during the synthesis process. The effectiveness of the proposed geometric modeling and synthesis procedures is verified by the demonstrated examples.


Author(s):  
Matthew J. Genge

Drawings, illustrations, and field sketches play an important role in Earth Science since they are used to record field observations, develop interpretations, and communicate results in reports and scientific publications. Drawing geology in the field furthermore facilitates observation and maximizes the value of fieldwork. Every geologist, whether a student, academic, professional, or amateur enthusiast, will benefit from the ability to draw geological features accurately. This book describes how and what to draw in geology. Essential drawing techniques, together with practical advice in creating high quality diagrams, are described the opening chapters. How to draw different types of geology, including faults, folds, metamorphic rocks, sedimentary rocks, igneous rocks, and fossils, are the subjects of separate chapters, and include descriptions of what are the important features to draw and describe. Different types of sketch, such as drawings of three-dimensional outcrops, landscapes, thin-sections, and hand-specimens of rocks, crystals, and minerals, are discussed. The methods used to create technical diagrams such as geological maps and cross-sections are also covered. Finally, modern techniques in the acquisition and recording of field data, including photogrammetry and aerial surveys, and digital methods of illustration, are the subject of the final chapter of the book. Throughout, worked examples of field sketches and illustrations are provided as well as descriptions of the common mistakes to be avoided.


2021 ◽  
Vol 13 (6) ◽  
pp. 3255
Author(s):  
Aizhao Zhou ◽  
Xianwen Huang ◽  
Wei Wang ◽  
Pengming Jiang ◽  
Xinwei Li

For reducing the initial GSHP investment, the heat transfer efficiency of the borehole heat exchange (BHE) system can be enhanced to reduce the number or depth of drilling. This paper proposes a novel and simple BHE design by changing the cross-sectional shape of the U-tube to increase the heat transfer efficiency of BHEs. Specifically, in this study, we (1) verified the reliability of the three-dimensional numerical model based on the thermal response test (TRT) and (2) compared the inlet and outlet temperatures of the different U-tubes at 48 h under the premise of constant leg distance and fluid area. Referent to the circular tube, the increases in the heat exchange efficiencies of the curved oval tube, flat oval tube, semicircle tube, and sector tube were 13.0%, 19.1%, 9.4%, and 14.8%, respectively. (3) The heat flux heterogeneity of the tubes on the inlet and outlet sides of the BHE, in decreasing order, is flat oval, semicircle, curved oval, sector, and circle shapes. (4) The temperature heterogeneity of the borehole wall in the BHE in decreasing order is circle, sector, curved oval, flat oval, and semicircle shapes. (5) Under the premise of maximum leg distance, referent to the heat resistance of the tube with a circle shape at 48 h, the heat exchange efficiency of the curved oval, flat oval, semicircle, and sector tubes increased 12.6%, 17.7%, 10.3%, and 7.8%, respectively. (6) We found that the adjustments of the leg distance and the tube shape affect the heat resistance by about 25% and 12%, respectively. (7) The flat-oval-shaped tube at the maximum leg distance was found to be the best tube design for BHEs.


2020 ◽  
Vol 174 ◽  
pp. 01048
Author(s):  
Elena Kassikhina ◽  
Vladimir Pershin ◽  
Nina Rusakova

The existing structures of the steel sinking headgear and permanent headframe do not meet the requirements of resource saving (metal consumption and manpower input at installation), and the present methods of the headframe designing do not fully reflect recent possibilities of applying of the advanced information technologies. Technical level of the modern software makes it possible for designers to set up multiple numerical experiments to create a computer simulation that allows solving the problem without field and laboratory experiments, and therefore without special costs. In this regard, a mathematical simulation has been developed and based on it, software to select cross-sections of multi- purpose steel headframe elements and to calculate proper weight of its metal structures depending on the characteristics and hoisting equipment. A headframe drawing is displayed, as the results of the software work, including list of elements, obtained optimal hoisting equipment in accordance with the initial data. The software allows speeding up graphic work and reducing manpower input on calculations and paper work. The software allows developing a three-dimensional image of the structure and its functional blocks, based on the obtained initial parameters, as well as developing control software for units with numerical control (NC) in order to manufacture multi-purpose headframes.


Author(s):  
B K A Ngoi ◽  
L E N Lim ◽  
S S G Lee ◽  
S W Lye

This paper proposes the construction of an energy envelope that can be used to advantage with the energy barrier method to analyse the natural resting aspect of engineering parts destined for automatic assembly. Unlike the energy barrier method, the energy envelope does not require any visualization of the projection of the energy barrier on the aspect of interest. The energy envelope is the three-dimensional topology of the changes in height of the centroid, as the part attempts changes of aspect. The paper describes how it may be computed in a CAD (computer aided design) solid modeller. The results of applying the energy envelope to prisms of square and cylindrical cross-sections are the same as those predicted by the energy barrier method. When extended to the analysis of a rectangular prism, the results were consistent with Boothroyd's dynamic solution and Boothroyd's experimental data. This conclusion is encouraging as there is no irrefutable evidence that the energy barrier method may be applied to the analysis of the rectangular prism.


Sign in / Sign up

Export Citation Format

Share Document