scholarly journals Reactor network synthesis with guaranteed robust performance

2017 ◽  
Author(s):  
Xiao Zhao

In this work a systematic model-based approach for reactor network synthesis problem with guaranteed robust dynamic performance will be presented. The work is based on the superstructure approach and aims to find an optimal process flowsheet with determined connection patterns of reactors, reactor types, design parameters and operating conditions. In comparison to the classical design methods, certain specified dynamic properties are guaranteed simultaneously under parametric uncertainty. Structural alternatives in the flowsheet, i.e., how reactors are interconnected, as well as in the control system, i.e., how controlled and manipulated variables are paired, are subject to design degrees of freedom. It is allowed that idle reactors and controllers can appear in the reactor network superstructure, so that a fixed number of non-idle reactors and controllers does not have to be assumed as a priori. The optimal reactor network design in either open- or closed-loop is determined by solving...

Author(s):  
Christoph Heinz ◽  
Markus Schatz ◽  
Michael V. Casey ◽  
Heinrich Stu¨er

To guarantee a faultless operation of a turbine it is necessary to know the dynamic performance of the machine especially during start-up and shut-down. In this paper the vibration behaviour of a low pressure model steam turbine which has been intentionally mistuned is investigated at the resonance point of an eigenfrequency crossing an engine order. Strain gauge measurements as well as tip timing analysis have been used, whereby a very good agreement is found between the methods. To enhance the interpretation of the data measured, an analytical mass-spring-model, which incorporates degrees of freedom for the blades as well as for the rotor shaft, is presented. The vibration amplitude varies strongly from blade to blade. This is caused by the mistuning parameters and the coupling through the rotor shaft. This circumferential blade amplitude distribution is investigated at different operating conditions. The results show an increasing aerodynamic coupling with increasing fluid density, which becomes visible in a changing circumferential blade amplitude distribution. Furthermore the blade amplitudes rise non-linearly with increasing flow velocity, while the amplitude distribution is almost independent. Additionally, the mechanical and aerodynamic damping parameters are calculated by means of a non-linear regression method. Based on measurements at different density conditions, it is possible to extrapolate the damping parameters down to vacuum conditions, where aerodynamic damping is absent. Hence the material damping parameter can be determined.


2020 ◽  
Vol 136 ◽  
pp. 106816
Author(s):  
F. Abunde Neba ◽  
Hoese M. Tornyeviadzi ◽  
Ahmad Addo ◽  
Nana Y. Asiedu ◽  
John Morken ◽  
...  

Adsorption ◽  
2020 ◽  
Author(s):  
Ester Rossi ◽  
Giuseppe Storti ◽  
Renato Rota

Abstract Among the adsorption-based separation processes for gaseous mixtures, those exploiting pressure variations, so-called Pressure Swing Adsorption (PSA) processes, are the most popular. In this work, we focus on the specific PSA configuration known as Dual Reflux-Pressure Swing Adsorption (DR-PSA) given its ability to achieve sharp separations. In the case of binary mixtures, an analytical approach based on Equilibrium Theory has been proposed to identify the operating conditions for complete separation under the assumption of linear isotherms. This same approach is not available when the separation is not complete. Accordingly, in this work we study the features of non-complete separations by solving numerically a general DR-PSA model with parameter values suitable to approach equilibrium conditions (no mass transport resistances, no axial mixing, isothermal conditions and no pressure drop), thus reproducing the analytical solution when complete separations are examined. Even for non-complete separations, triangularly shaped regions at constant purity can be identified on a plane whose axes correspond to suitable design parameters. Moreover, we found a general indication on how to select the lateral feed injection position to limit the loss in product purities when complete separation is not established, whatever is the composition of the feeding mixture. Finally, a sensitivity analysis with respect to pressure ratio, light reflux ratio and heavy product flowrate is proposed in order to assess how to recover product purities according to the specific degrees of freedom of a DR-PSA apparatus.


Author(s):  
Muhammad I. Rashad ◽  
Hend A. Faiad ◽  
Mahmoud Elzouka

This paper presents the operating principle of a novel solar rotary crank-less heat engine. The proposed engine concept uses air as working fluid. The reciprocating motion is converted to a rotary motion by the mean of unbalanced mass and Coriolis effect, instead of a crank shaft. This facilitates the engine scaling and provides several degrees of freedom in terms of structure design and configuration. Unlike classical heat engines (i.e. Stirling), the proposed engine can be fixed to the ground which significantly reduce the generation unit cost. Firstly, the engine’s configuration is illustrated. Then, order analysis for the engine is carried out. The combined dynamics and thermal model is developed using ordinary differential equations which are then numerically solved by Simulink™. The resulting engine thermodynamics cycle is described. It incorporates the common thermodynamics processes (isobaric, isothermal, isochoric processes). Finally, the system behavior and performance are analyzed along with studying the effect of various design parameters on operating conditions such as engine speed, output power and efficiency.


1998 ◽  
Vol 124 (1) ◽  
pp. 132-140 ◽  
Author(s):  
Izhak Bucher

This paper deals with the optimization of vibrating structures as a mean for minimizing unwanted vibration. Presented in this work is a method for automatic determination of a set of preselected design parameters affecting the geometrical layout or shape of the structure. The parameters are selected to minimize the dynamic response to external forcing or base motion. The presented method adjusts the structural parameters by solving an optimization problem in which the constraints are dictated by engineering considerations. Several constraints are defined so that the static deflection, the stress levels and the total weight of the structure are kept within bounds. The dynamic loading acting upon the structure is described in this work by its power spectral density, with this representation the structure can be tailored to specific operating conditions. The uncertain nature of the excitation is overcome by combining all possible spectra into one PSD encompassing all possible loading patterns. An important feature of the presented method is its numerical efficiency. This feature is essential for any reasonably sized problem as such problems are usually described by thousands of degrees of freedom arising from a finite-element idealization of the structure. In this paper, efficient, closed form expressions, for the cost function and its gradients are derived. Those are computed with a partial set of eigenvectors and eigenvalues thus increasing the efficiency further. Several numerical examples are presented where both shape optimization and the selection of discrete components are illustrated.


1982 ◽  
Vol 104 (4) ◽  
pp. 460-468 ◽  
Author(s):  
I. Etsion

The dynamic behavior of a noncontacting coned face seal is analyzed for the case of a rigidly mounted rotating seat and a flexibly mounted stationary ring taking into account various design parameters and operating conditions. The primary seal ring motion is expressed by a set of nonlinear equations for three degrees of freedom. These equations, which are solved numerically, allow identification of two dimensionless groups of parameters that affect the seal dynamic behavior. Stability maps for various seals are presented. These maps contain a stable-to-unstable transition region in which the ring wobbles at half the shaft frequency. The effect of various parameters on seal stability is discussed and an approximate expression for critical stability is offered. The theoretical model assumes frictionless flexible mounting of the seal ring such as in metal bellows. However, the results for critical stability can also be used as an upper limit for cases when friction in the secondary seal is present.


2013 ◽  
Vol 135 (7) ◽  
Author(s):  
Gianmarc Coppola ◽  
Dan Zhang ◽  
Kefu Liu ◽  
Zhen Gao

Reconfigurable robotic systems can enhance productivity and save costs in the ever growing flexible manufacturing regime. In this work, the idea to synthesize robotic mechanisms with dynamic properties that are reconfigurable is studied, and a methodology to design reconfigurable mechanisms with this property is proposed, named reconfigurable dynamics (Re-Dyn). The resulting designs have not only the kinematic properties reconfigurable, such as link lengths, but also properties that directly affect the forces and accelerations, such as masses and inertias. A 2-degree of freedom (DOF) parallel robot is used as a test subject. It is analyzed and redesigned with Re-Dyn. This work also presents the robots forward dynamic model in detail, which includes the force balancing mediums. The connection method is directly utilized for this derivation, which is well suited for multibody dynamics and provides insight for design parameters (DPs). Dynamic performance indices are also briefly discussed as related to the Re-Dyn method. After redesigning the robot, a full simulation is conducted to compare performances related to a flexible manufacturing situation. This illustrates the advantages of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document