scholarly journals The Force Convection Heat Transfer of a Nanofluid over a Flat Plate: using the Buongiorno’s model: the Thermophysical Properties as a Function of Nanoparticles

2016 ◽  
Vol 3 (1) ◽  
pp. 01-20 ◽  
Author(s):  
Mahmoud Sabour ◽  
Mohammad Ghalambaz
Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1508
Author(s):  
Nagesh Babu Balam ◽  
Tabish Alam ◽  
Akhilesh Gupta ◽  
Paolo Blecich

The natural convection flow in the air gap between the absorber plate and glass cover of the flat plate solar collectors is predominantly evaluated based on the lumped capacitance method, which does not consider the spatial temperature gradients. With the recent advancements in the field of computational fluid dynamics, it became possible to study the natural convection heat transfer in the air gap of solar collectors with spatially resolved temperature gradients in the laminar regime. However, due to the relatively large temperature gradient in this air gap, the natural convection heat transfer lies in either the transitional regime or in the turbulent regime. This requires a very high grid density and a large convergence time for existing CFD methods. Higher order numerical methods are found to be effective for resolving turbulent flow phenomenon. Here we develop a non-dimensional transient numerical model for resolving the turbulent natural convection heat transfer in the air gap of a flat plate solar collector, which is fourth order accurate in both spatial and temporal domains. The developed model is validated against benchmark results available in the literature. An error of less than 5% is observed for the top heat loss coefficient parameter of the flat plate solar collector. Transient flow characteristics and various stages of natural convection flow development have been discussed. In addition, it was observed that the occurrence of flow mode transitions have a significant effect on the overall natural convection heat transfer.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1855 ◽  
Author(s):  
S. M. Sohel Murshed ◽  
Mohsen Sharifpur ◽  
Solomon Giwa ◽  
Josua P. Meyer

Suspensions of nanoparticles, widely known as nanofluids, are considered as advanced heat transfer media for thermal management and conversion systems. Research on their convective thermal transport is of paramount importance for their applications in such systems such as heat exchangers and solar collectors. This paper presents experimental research on the natural convection heat transfer performances of nanofluids in different geometries from thermal management and conversion perspectives. Experimental results and available experiment-derived correlations for the natural thermal convection of nanofluids are critically analyzed. Other features such as nanofluid preparation, stability evaluation and thermophysical properties of nanofluids that are important for this thermal transfer feature are also briefly reviewed and discussed. Additionally, techniques (active and passive) employed for enhancing the thermo-convection of nanofluids in different geometries are highlighted and discussed. Hybrid nanofluids are featured in this work as the newest class of nanofluids, with particular focuses on the thermophysical properties and natural convection heat transfer performance in enclosures. It is demonstrated that there has been a lack of accurate stability evaluation given the inconsistencies of available results on these properties and features of nanofluids. Although nanofluids exhibit enhanced thermophysical properties such as viscosity and thermal conductivity, convective heat transfer coefficients were observed to deteriorate in some cases when nanofluids were used, especially for nanoparticle concentrations of more than 0.1 vol.%. However, there are inconsistencies in the literature results, and the underlying mechanisms are also not yet well-understood despite their great importance for practical applications.


Author(s):  
Yang Liu ◽  
Qianqian Jia ◽  
Haijun Jia

Because annulus channel can be used to develop high efficiency compact heat exchangers, the heat transfer in annulus channel has become great interest to researchers in recent years. Most of the studies focus on the vertical concentric and horizontal eccentric annulus. The investigations about single phase force convection heat transfer inside a vertical eccentric annulus are not enough. In this work, force convection heat transfer is numerically studied to determine the eccentricity effect inside a vertical annulus. For this purpose, full Reynolds-averaged Navier-Stokes equations along with energy equations are solved in a 3-D grid. The discrete method of the equations is based on finite-volume method and the turbulence model is RNG k-ε model. The radius ratio of the annulus is 0.8 in this work. Heat flux of one wall is constant while the other is insulated. Firstly, the feasibility and exactness of the numerical method is proved by comparing the Nusselt number with experiment in concentric annulus. Then the effect of eccentricity is studied in detail.


2013 ◽  
Vol 448-453 ◽  
pp. 3316-3319
Author(s):  
Chuang Sun ◽  
Yang Zhao ◽  
De Fu Li ◽  
Qing Ai ◽  
Xin Lin Xia

According to the view of heat transfer, the process of the fluid flow with high temperature and high speed over a flat plate may be considered as the heat transfer process within a compressible thermal boundary layer. Based on the numerical results of thermal isolation assumption, combining the temperature comparison with modification method, a coupled method of convection heat transfer coefficient with temperature field of the plate is established, and the characteristics of the thermal response for the flat plate is dominated. Take some ribbed plates as instances, the convection heat transfer coefficient and temperature field of the plate are simulated through the provided coupled method. The results show that, not only the position and materials of the plate influence the convection heat transfer coefficient, but also the time.


Sign in / Sign up

Export Citation Format

Share Document