scholarly journals Stator Flux Optimization on Direct Torque Control with Fuzzy Logic

Author(s):  
Fatih Korkmaz
Author(s):  
Zineb Mekrini ◽  
Seddik Bri

<p>The aim of this article is propose a method to improve the direct torque control and design a Fuzzy Logic based Controller which can take necessary control action to provide the desired torque and flux of an asynchronous machine. It’s widely used in the industrial application areas due to several features such as fast torque response and less dependence on the rotor parameters. The major problem that is usually associated with DTC control is the high torque ripple as it is not directly controlled. The high torque ripple causes vibrations to the motor which may lead to component lose, bearing failure or resonance. The fuzzy logic controller is applied to reduce electromagnetic torque ripple. In this proposed technique, the two hysteresis controllers are replaced by fuzzy logic controllers and a methodology for implementation of a rule based fuzzy logic controller are presented. The simulation by Matlab/Simulink was built which includes induction motor d-q model, inverter model, fuzzy logic switching table and the stator flux and torque estimator. The validity of the proposed method is confirmed by the simulative results of the whole drive system and results are compared with conventional DTC method. </p>


Author(s):  
Elakhdar Benyoussef ◽  
Abdelkader Meroufel ◽  
Said Barkat

This paper presents a direct torque control is applied for salient-pole double star synchronous machine without mechanical speed and stator flux linkage sensors. The estimation is performed using the extended Kalman filter known by it is ability to process noisy discrete measurements. Two control approaches using fuzzy logic DTC, and neural network DTC are proposed and compared. The validity of the proposed controls scheme is verified by simulation tests of a double star synchronous machine. The stator flux, torque, and speed are determined and compared in the above techniques. Simulation results presented in this paper highlight the improvements produced by the proposed control method based on the extended Kalman filter under various operation conditions.


Direct torque control (DTC) is known to generate fast and robust control for induction motor drives. Even though, in classical DTC, there exists a notable ripple in torque and flux during steady state, which can be reflected towards the speed response and generating undesirable acoustic noise. This paper introduces two approaches based on variable structure control (VSC) and fuzzy logic control (FLC) to mitigate steady state chattering problem while preserving the merits of DTC operation. The inverter is controlled directly on the basis of stator flux and the torque errors, by selecting most appropriate voltage vector from switching logic table. A comparative study is performed for the three control topologies including conventional DTC and simulation results are presented and discussed. It is concluded that SMC and intelligent control based technique provide better characteristics in steady state operation with regards to the conventional DTC


Author(s):  
Jian-Ding Tan ◽  
Siaw-Paw Koh ◽  
Sieh-Kiong Tiong ◽  
Kharudin Ali ◽  
Ahmed Abdalla

Over the past few years, multiple types of modifications have been proposed onto the Direct Torque Control (DTC) scheme. Among others is the implementation of Space Vector Modulation (SVM). In this paper, two new control strategies are proposed onto an SVM-DTC. Instead of using PI torque and flux controllers, a fuzzy logic control method is implemented in the proposed modification to achieve a more constant switching frequency while minimizing the torque error. The fuzzy logic controller controls the voltages in direct and quadratic reference frame (Vd, Vq). This approach fully utilizes the switching capability of the inverter and thus improving the overall system performance. To overcome issues in open loop stator flux such as DC drift and saturation, a closed loop estimation method of stator flux is also proposed based on voltage model and low pass filter. The performance of the proposed control strategy is benchmarked with that of a conventional DTC–SVM. Simulations and experiments were carried out and the results show that the proposed method outperforms the conventional DTC-SVM in terms of DC-offset elimination and overall system robustness. <p class="MsoNormal" style="text-align: justify; text-indent: 36.0pt;"><span style="font-size: 9.0pt; font-family: 'Arial','sans-serif'; color: black;" lang="EN-US">Over the past few years, multiple types of modifications have been proposed onto the Direct Torque Control (DTC) scheme. Among others is the implementation of Space Vector Modulation (SVM). In this paper, two new control strategies are proposed onto an SVM-DTC. Instead of using PI torque and flux controllers, a fuzzy logic control method is implemented in the proposed modification to achieve a more constant switching frequency while minimizing the torque error. The fuzzy logic controller controls the voltages in direct and quadratic reference frame (V<sub>d</sub>, V<sub>q</sub>). This approach fully utilizes the switching capability of the inverter and thus improving the overall system performance. To overcome issues in open loop stator flux such as DC drift and saturation, a closed loop estimation method of stator flux is also proposed based on voltage model and low pass filter. The performance of the proposed control strategy is benchmarked with that of a conventional DTC–SVM. Simulations and experiments were carried out and the results show that the proposed method outperforms the conventional DTC-SVM in terms of DC-offset elimination and overall system robustness. </span></p>


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2154 ◽  
Author(s):  
Dazhi Wang ◽  
Tianqing Yuan ◽  
Xingyu Wang ◽  
Xinghua Wang ◽  
Yongliang Ni

In order to improve the performance of the servo control system driven by a permanent magnet synchronous motor (PMSM) under novel direct torque control (NDTC), which, utilizing composite active vectors, fixed sector division criterion, is proposed in this paper. The precondition of the accurate compensations of torque and flux errors is that the sector where the stator flux linkage is located can be determined accurately. Consequently, the adaptive sector division criterion is adopted in NDTC. However, the computation burden is inevitably increased with the using of the adaptive part. On the other hand, the main errors can be compensated through SV-DTC (DTC-utilizing single active vector), while another active vector applied in NDTC can only supply the auxiliary error compensation. The relationships of the two active vectors’ characteristics in NDTC are analyzed in this paper based on the active factor. Furthermore, the fixed sector division criterion is proposed for NDTC (FS-NDTC), which can classify the complexity of the control system. Additionally, the switching table for the selections of the two active vectors is designed. The effectiveness of the proposed FS-NDTC is verified through the experimental results on a 100-W PMSM drive system.


Author(s):  
Umakanta Mahanta ◽  
Bhabesh Chandra Mohanta ◽  
Anup Kumar Panda ◽  
Bibhu Prasad Panigrahi

Torque ripple reduction is one of the major challenges in switching table-based direct torque control (DTC) while operating for open phase faults of an induction motor, as the switching vectors are unevenly distributed. This can be minimized by increasing the level of the inverter and with the use of multi-phase motors. Fuzzy logic-based DTC is another solution to the above problem. In this paper, a comparative analysis is done between switching table-based DTC (ST-DTC) and fuzzy logic-based DTC for increasing the performance during open phase faults of a five-phase induction motor. The result shows that in fuzzy logic-based DTC with a two-level inverter, the torque ripple is reduced by 5.164% as compared with ST-DTC with a three-level inverter. The fuzzy logic-based DTC with the three-level inverter also gives better performance as compared with fuzzy logic-based DTC with the two-level inverter. The current ripple also reduced by 9.605% with respect to ST-DTC. Thus, fuzzy logic-based DTC is more suitable and cost effective for open phase fault-tolerant drives.


Sign in / Sign up

Export Citation Format

Share Document