Precise Analytical Expressions for Mechatronics Systems Time Domain Performance Specifications and Verification using MATLAB

Author(s):  
Farhan A. Salem
2012 ◽  
Vol 40 (4) ◽  
pp. 414-438 ◽  
Author(s):  
Mahdi Izadi ◽  
Mohd Zainal Ab Kadir ◽  
Chandima Gomes ◽  
Wan Fatin Hamamah Wan Ahmad

2012 ◽  
Vol 60 (6) ◽  
pp. 2627-2634 ◽  
Author(s):  
Mohamed A. Elmansouri ◽  
Matthew J. Radway ◽  
Dejan S. Filipovic

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4302 ◽  
Author(s):  
Amir Haider ◽  
MuhibUr Rahman ◽  
Mahdi Naghshvarianjahromi ◽  
Hyung Seok Kim

This paper investigates the time-domain performance of a switchable filter impulse radio ultra-wideband (IR-UWB) antenna for microwave breast imaging applications. A miniaturized CPW-fed integrated filter antenna with switchable performance in the range of the Worldwide Interoperability for Microwave Access (WiMAX) and Wireless Local Area Network (WLAN) bands could operate well within a 3.0 to 11 GHz frequency range. The time-domain performance of the filter antenna was investigated in comparison to that of the designed reference wideband antenna. By comparing both antennas’ time-domain characteristics, it was seen that the switchable filter antenna had good time-domain resolution along with the frequency-domain operation. Additionally, the time-domain investigation revealed that the switchable filter wide-band antenna performed similarly to the reference wide band antenna. This antenna was also utilized for a tumor detection application, and it was seen that the switchable filter wide-band antenna could detect a miniaturized irregularly shaped tumor easily, which is quite promising. Such an antenna with a good time-domain resolution and tumor detection capability will be a good candidate and will find potential applications in microwave breast imaging.


Geophysics ◽  
1972 ◽  
Vol 37 (6) ◽  
pp. 1005-1021 ◽  
Author(s):  
G. Kunetz

A few methods in the processing and interpretation of magnetotelluric soundings over a stratified earth are investigated, with emphasis on the less commonly used time‐domain procedures. Analytical expressions of the theoretical transfer function between the magnetic‐ and electric‐field variations, both in frequency and time domain, are derived. Their properties are studied, and recursive algorithms are given for their numerical computation. On the other hand, a procedure is outlined which leads directly in the time domain to the experimental values of this transfer function. It is similar to the methods used in seismic analysis for signal determination and makes use of the auto‐ and crosscorrelation functions of the measured field variations. Finally, methods of interpretation, based either on a visual or on an automatic comparison of these theoretical and experimental transfer functions, are proposed. For the case of automatic interpretation, complementary geologic data should be used where possible to take care of the lack of uniqueness of the solution.


2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Amin M. Abbosh

A compact and directive ultrawideband antenna is presented in this paper. The antenna is in the form of an antipodal tapered slot with resistive layers to improve its directivity and to reduce its backward radiation. The antenna operates over the frequency band from 3.1 GHz to more than 10.6 GHz. It features a directive radiation with a peak gain which is between 4 dBi and 11 dBi in the specified band. The time domain performance of the antenna shows negligible distortion. This makes it suitable for the imaging systems which require a very short pulse for transmission/reception. The effect of the multilayer human body on the performance of the antenna is also studied. The breast model is used for this purpose. It is shown that the antenna has more than 90% fidelity factor when it works in free space, whereas the fidelity factor decreases as the signal propagates inside the human body. However, even inside the human body, the fidelity factor is still larger than 70% revealing the possibility of using the proposed antenna in biomedical imaging systems.


Sign in / Sign up

Export Citation Format

Share Document