scholarly journals 500nW A Low Power Switched Capacitor Based Active Low Pass Filter for Biomedical Applications

2016 ◽  
Vol 7 (5/6) ◽  
pp. 25-32
Author(s):  
Gnaneshwara Chary U ◽  
Babitha L ◽  
Vandana Ch
2013 ◽  
Vol 562-565 ◽  
pp. 1132-1136
Author(s):  
Xiao Wei Liu ◽  
Jian Yang ◽  
Song Chen ◽  
Liang Liu ◽  
Rui Zhang ◽  
...  

In this paper, we design a high-order switched capacitor filter for rapid change parameter converter. This design uses a structure which consists of three biquads filter sub-units. The design is a 6th-order SC elliptic low-pass filter, and the sample frequency is 250 kHz. By the MATLAB Simulink simulation, the system can meet the design requirements in the time domain. In this paper, the 6th-order switched capacitor elliptic low-pass filter was implemented under 0.5 um CMOS process and simulated in Cadence. The final simulation results show that the pass-band cutoff frequency is 10 kHz, and the maximum pass-band ripple is about 0.106 dB. The stop-band cutoff frequency is 20 kHz, and the minimum stop-band attenuation is 74.78 dB.


2016 ◽  
Vol 26 (03) ◽  
pp. 1750048 ◽  
Author(s):  
Vida Orduee Niar ◽  
Gholamreza Zare Fatin

In this paper, a [Formula: see text]-[Formula: see text] low-pass and low power filter with tunable in-band attenuation for WiMAX/LTE receiver is presented. The fourth-order filter consists of two cascaded biquad stages. The source-follower (SF) stage is used as a key building block in these biquads. In this paper, we have presented a circuit technique to reduce the nonlinearity of the SF stage resulting from unmatched signal swings at the gate and source terminals of the input transistor. The proposed SF stage, is used for design of a linear biquad which is then utilized in a fourth-order Butterworth low-pass filter. The simulation results of the filter for bandwidth of 10 MHz show that the IIP3 of the filter is equal to 8.22[Formula: see text]dBm, in-band noise density is 100[Formula: see text]nV/[Formula: see text]Hz and power consumption is 5.9[Formula: see text]mW. The supply voltage of the filter is equal to 1[Formula: see text]V.


2011 ◽  
Vol 32 (9) ◽  
pp. 095002 ◽  
Author(s):  
Zheng Gong ◽  
Bei Chen ◽  
Xueqing Hu ◽  
Yin Shi ◽  
Fa Foster Dai

2019 ◽  
Vol 29 (07) ◽  
pp. 2050109
Author(s):  
Yan Li ◽  
Yong Liang Li

A novel capacitance multiplier is proposed to implement an ultra-low-frequency filter for physiological signal processing in biomedical applications. With the proposed multiplier, a simple first-order low-pass filter achieves a [Formula: see text]3-dB frequency of 33.4[Formula: see text]μHz with a 1-pF capacitance and a 20[Formula: see text]k[Formula: see text] resistance. This corresponds to a multiplication factor of as large as [Formula: see text]. By changing the controlling terminal, the [Formula: see text]3-dB frequency can be tuned in a wide range of 33.4[Formula: see text]μHz–6.3[Formula: see text]kHz.


Sign in / Sign up

Export Citation Format

Share Document